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A B S T R A C T

The missing data problem is inevitable when collecting traffic data from intelligent transporta-
tion systems. Previous studies have shown the advantages of tensor completion-based approaches
in solving multi-dimensional data imputation problems. In this paper, we extend the Bayesian
probabilistic matrix factorization model by Salakhutdinov and Mnih (2008) to higher-order
tensors and apply it for spatiotemporal traffic data imputation tasks. In doing so, we care about
not only the model configuration but also the representation of data (i.e., matrix, third-order
tensor and fourth-order tensor). Using a nine-week spatiotemporal traffic speed data set (road
segment× day× time of day) collected in Guangzhou, China, we evaluate the performance of this
fully Bayesian model and explore how different data representations affect imputation perfor-
mance through extensive experiments. The results show the proposed model can produce ac-
curate imputations even under temporally correlated data corruption. Our experiments also show
that data representation is a crucial factor for model performance, and a third-order tensor
structure outperforms the matrix and fourth-order tensor representations in preserving in-
formation in our data set. We hope this work could give insights to practitioners when per-
forming spatiotemporal data imputation tasks.

1. Introduction

With the development and application of intelligent transportation systems, large quantities of urban traffic data are collected on
a continuous basis from various sources, such as loop detectors, cameras, and floating vehicles. These data sets capture the underlying
states and dynamics of transportation networks and the whole system and become beneficial to many traffic operation and man-
agement applications, including routing, signal control, travel time prediction, and so on. In general, traffic data register full spatial
and temporal features (where and when the data is collected), together with some other site-specific attributes. Usually, we can
organize the spatiotemporal traffic data into a multi-dimensional structure. For example, a link’s flow/speed information over a week
can be summarized into seven daily time series. Combined with information from other links in a city, the overall spatiotemporal data
can be structured as a multi-dimensional array (road segment× day× time of day), which is often referred to as a tensor.

A common drawback that undermines the use of such spatiotemporal data is the “missingness” problem, which may result from
various factors such as hardware/software failure, network communication problems, and zero/limited reports from floating/
crowdsourcing systems. For example, when a sensor at a particular location/site is not functional, we will lose observations from that
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sensor continuously until it is replaced or repaired. The missing data problem becomes even more common in floating sensing and
crowdsourcing systems. For example, when using floating vehicles to collect link speed data, we cannot perform estimation if no
floating vehicles appear on that link in a given time window; however, this information is an essential input for route planning and
travel time prediction tasks. In order to take full use of the incomplete spatiotemporal data, a critical research question is to provide
robust estimates of those missing (or not observed) entries in a spatiotemporal traffic data set. There exists a large body of literature
about missing data imputation in transportation systems. Li et al. (2014) and Ni et al. (2005) provide a comprehensive review of
imputation methods for traffic data. The authors summarize imputation algorithms into three categories: prediction, interpolation,
and statistical learning-based methods.

In modeling spatiotemporal traffic data, it is critical to take the strong spatiotemporal correlation patterns into consideration.
Tensor decomposition is a standard technique to capture the multi-dimensional structural dependencies. The overall idea is to model
the original multi-dimensional data using a compact structure, such as the CANDECOMP/PARAFAC (CP) model and the Tucker
model (Kolda and Bader, 2009). For imputation tasks, we are interested in making robust predictions of those unobserved entries
rather than in estimating model parameters. This inspires researchers to take a probabilistic approach to tackle the missing data
imputation problem. To this end, for instance, Salakhutdinov and Mnih (2008) developed a Bayesian matrix factorization algorithm
which provides reliable estimation. Another problem for traffic data tensor is to identify the most appropriate data representation for
missing data imputation tasks. For example, traffic data collected in several weeks from multiple links can be organized into different
representations, such as a matrix (road segment× time series), a third-order tensor (road segment× day× time of day), and even a
fourth-order tensor (road segment× week× day of week× time of day). Ran et al. (2016) studied the effect of spatial information by
comparing the performance between a fourth-order day× week× time× space tensor with separately defined third-order
day× week× time× tensors for each location. However, to our knowledge, so far no studies have examined the effect of different
representations of the whole data set on imputation performance. These two problems are important when applying tensor de-
composition techniques in real-world traffic data imputation problems.

In this paper, we address the above two challenges for missing data imputation in a spatiotemporal multi-dimensional setting. In
doing so, we extend the Bayesian matrix factorization model by Salakhutdinov and Mnih (2008) to a higher-order case to learn the
underlying statistical patterns in spatiotemporal traffic data—Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) tensor decom-
position model. This fully Bayesian model characterizes the data generation process and thus allows us to impute missing entries
efficiently. We place conjugate priors on hyper-parameters to analytically derive the posterior distributions, and this allows us to
develop an efficient Markov chain Monte Carlo (MCMC) algorithm to estimate the model. This Bayesian approach can achieve stable
performance with varying missing rates and even under non-random correlated missing conditions, which is a difficult problem for
traditional tensor-based imputation methods. Most importantly, the MCMC algorithm provides a natural way for multiple imputation
(Ni et al., 2005), which allows us to compute not only the unbiased point estimates but also robust uncertainty measures of those
missing values. To answer the data representation problem, we organize the spatiotemporal traffic data into three different re-
presentations: (A) matrix (road segment× time series), (B) third-order tensor (road segment× day× time interval), and (C) fourth-
order tensor (road segment× week× day× time interval). We evaluate the performance of different tensor-based imputation models
on these three representations and find that the BGCP model performs consistently well with a third-order tensor structure.

The main contributions of this paper are threefold: (1) we propose a Bayesian probabilistic imputation framework for robust
missing data imputation in a spatiotemporal (or other multi-dimensional) setting; (2) we demonstrate that BGCP model produces
accurate imputation even under temporally correlated data corruptions; (3) we show that data representation is an important factor
determining the overall imputation performance, and find the third-order (road segment× day× time interval) structure most ap-
propriate for our traffic speed data set.

The remainder of this paper is structured as follows. Section 2 reviews tensor computation methods and their applications in
general missing data imputation problems and also some specific transportation data modeling problems. In Section 3, we introduce
the BGCP model which characterizes the multi-dimensional data generation process and present an efficient Gibbs sampling algo-
rithm to obtain posterior distributions of different variables. Using a large-scale traffic speed data set collected in Guangzhou (Chen
et al., 2018), we demonstrate the application of the BGCP model in Section 4, and also examine how data representation and different
missing scenarios affect model performance in the missing data imputation tasks. Finally, Section 5 concludes this study and suggests
some future research directions.

2. Literature review

Tensor computation is a powerful technique in various statistical learning problems. Kolda and Bader (2009) gives a very
comprehensive review of tensor decomposition and its applications. In computer science, tensor computation techniques are widely
used for estimation tasks such image recovery and data imputation (Liu et al., 2013; Zhao et al., 2015a,b) and also for re-
commendation systems (Xiong et al., 2010). In terms of missing data imputation in tensors, the central methodology of previous work
can be summarized into two types. The first type is to use low-rank tensor completion without a decomposition structure (Liu et al.,
2013). This approach has a good property to avoid the non-convex optimization problem. The other approach is tensor decom-
position, which can be considered a higher-order extension of the singular value decomposition (SVD) algorithm. In this case, a low-
rank approximation model is estimated using partially observed data. Then one can compute a missing entry from the estimated low-
rank model (Anandkumar et al., 2014). There exists a large body of literature about missing traffic data imputation problem. We refer
interested readers to Ran et al. (2016) and the references therein for a brief review about the imputation problems and solutions and
some state-of-the-art models. In this section, we only review some representative tensor-based methods and applications.
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Tensor has also been a handy tool in transportation research, in particular on modeling complex traffic/transportation data set,
which often has a spatiotemporal multi-dimensional property. For example, in transportation planning, if collecting origin-desti-
nation (OD) demand matrices over time, we can create a third-order (origin× destination× time) tensor that allows us to take the
temporal variation in demand patterns into consideration. Spatiotemporal traffic speed/flow data—as mentioned before—is also a
good example to apply the tensor structure, since observations can be simply specified by a third-order road segment× day× time of
day tensor (Chen et al., 2018). Recently, factorization-based approaches—in particular tensor decomposition—have attracted more
and more attention and have been tested in many empirical works (e.g., Qu et al., 2009; Asif et al., 2013b; Li et al., 2013; Tan et al.,
2013; Asif et al., 2016; Goulart et al., 2017). For example, Ran et al. (2016) employed HaLRTC—a low-rank tensor completion
algorithm proposed by Liu et al. (2013)—to estimate the missing traffic volume data. Asif et al. (2016) and Chen et al. (2018) used
tensor decomposition models to recover missing traffic speed data collected from urban road networks. Goulart et al. (2017) de-
veloped a Tucker decomposition methods to promote parsimony in the core tensor. Apart from missing data imputation, a good body
of previous studies have demonstrated the application of tensor computation in solving other transportation problems, such as traffic
prediction (Tan et al., 2016), data compression (Asif et al., 2013a), and mobility pattern discovery (Sun and Axhausen, 2016).

Most previous studies on tensor completion rely on trace norm minimization to find a low-rank approximation to the original
incomplete tensor (Liu et al., 2013; Ran et al., 2016). However, such optimization is often prone to overfitting because it only
computes a single point estimate, in particular when the missing rate is large. As a result, in dealing with a sparse tensor, it becomes
difficult for an optimization-based completion algorithm to capture the global information and make a good estimate (Salakhutdinov
and Mnih, 2008; Anandkumar et al., 2014). To address this issue, Bayesian inference methods such as MCMC and variational in-
ference have been designed and used for tensor decomposition (Xiong et al., 2010; Rai et al., 2014; Zhao et al., 2015a,b). The
advantage of a Bayesian framework is twofold: (1) a Bayesian model requires fewer observations to perform inference, thus over-
coming the sparsity problem or extreme missing conditions (Salakhutdinov and Mnih, 2008; Rai et al., 2014); (2) the MCMC al-
gorithm provides a natural way for multiple imputation, providing not only point estimates but also robust uncertainty measures for
those missing entries. In the next section, we extend the neat work of Salakhutdinov and Mnih (2008)—a Bayesian probabilistic
matrix factorization model—to a multi-dimensional tensor setting to model a large-scale spatiotemporal traffic data set.

Apart from the tensor-based approach, a wide variety of data-driven spatiotemporal imputation methods have been covered in
many real-world applications. Here we review some signature works on different machine learning models. Tang et al. (2015)
developed a hybrid approach which applies the Fuzzy C-Means-based method for imputation and uses Genetic Algorithm (GA) to find
optimal membership functions and centroids of the Fuzzy C-Means models. Duan et al. (2016) proposed to use stacked denoising
stacked autoencoders (SDAE) to extract features from high dimension traffic data and impute missing values. Li et al. (2018) pro-
posed a multi-view (spatial and temporal) learning algorithm that integrates long short-term memory (LSTM) units and support
vector regression (SVR). Two cokriging methods were proposed in Bae et al. (2018) to model spatiotemporal dependencies and
perform imputation in traffic data. In particular, the authors evaluated their models against different missing pattern scenarios (e.g.,
random missing and block missing). Based on spatiotemporal correlations, Laña et al. (2018) proposed two machine learning models
for missing data imputation: a spatial context sensing model (using information from surrounding sensors) and an automated
clustering algorithm (obtaining optimal number of patterns). Notably, a recent work from Rodrigues et al. (2018) used multi-output
Gaussian processes—as a flexible Bayesian nonparametric model—to capture the complex spatial and temporal patterns in crowd-
sourced traffic data. Gaussian processes offer a very flexible way to capture spatiotemporal dependencies at different scales.

3. Bayesian Gaussian CP decomposition

In this section, we present the framework to fill missing/unobserved entries in a multi-dimensional traffic data tensor. We extend
the Bayesian matrix factorization model of Salakhutdinov and Mnih (2008) to higher-order tensors and introduce a Bayesian
Gaussian CANDECOMP/PARAFAC (BGCP) tensor decomposition model which characterizes the data generation process.

3.1. Model description

LetX × × ×n n nd1 2 denote a dth-order tensor, where nk is the dimension along the kth way ( …k d{1, 2, , }). In this tensorX , we
use = …i i i i( , , , )d1 2 ( …i n k d1 , {1, 2, , }k k ) to denote the index of an entry and we denote by xi the value of this entry. The idea
of CP decomposition is to approximate X using a low-rank structure as follows

X =
=

u u u ,
j

r

j j j
d

1

(1) (2) ( )

(1)

where uj
k n( ) k is the jth column vector of the kth decomposed factor matrix ×U k n r( ) k . The symbol means vector outer product,

and thus u u uj j j
d(1) (2) ( ) is a rank-one tensor. With this formulation, the CP decomposition of a tensor can be considered a sum of r

rank-one component tensors (we call r the CP rank of tensor X ). Element-wise, Eq. (1) is equivalent to

=
=

x u u u ,i
j

r

i j i j i j
d

1

(1) (2) ( )
d1 2

(2)

where ui j
k( )

k is the value at i j( , )k (row ik, column j) in the kth factor matrix U k( ) .
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The formulation above provides the general idea of CP decomposition. It should be noted that the tensor X is incomplete with
missing entries. We denote by the index set of those observed entries.

We next introduce a fully Bayesian model for the data generation process. First, we assume that the noise term for each observed
entry (i ) in the approximation follows independent Gaussian distribution

Nx x( , ),i i
1 (3)

where N (·) denotes a Gaussian distribution and is the precision, which is a universal parameter for all elements.
To model the tensor data properly, we place flexible prior distributions over both the group of factor matrices U k( ) and the

precision . Specifically, the prior distributions over the row vectors in all factor matrices are assumed to be multivariate Gaussians:

Nu µ( , ( ) ).i
k k k( ) ( ) ( ) 1

k (4)

In a Bayesian setting, we place conjugate Gaussian-Wishart priors for hyper-parameters µ k r( ) and ×k r r( ) . This will en-
hance the robustness of the model and also speed up the convergence when performing model inference using sampling algorithms.
The hyper-priors on µ k( ) and k( ) = …k d( 1, , ) are defined as below:

N= ×
µ µ

µ µ µ
W

p W
( , ) Gaussian-Wishart( , , , ),

( , ) ( , ( ) ) Wishart( , ).

k k

k k k k k

( ) ( )
0 0 0 0

( ) ( ) ( )
0 0

( ) 1 ( )
0 0 (5)

A Wishart distribution with 0 degrees of freedom and a ×r r scale matrix W0 is given by:

= { }W
C

WWishart( , ) 1 | | exp 1
2

tr( ) ,k k r k( )
0 0

( ) 1
2 0

1 ( )0

(6)

where tr(·) (the trace function) of a square matrix is the sum of all elements on its main diagonal.
Under the Gaussian assumption in Eq. (3), the precision parameter captures the degree of noise in the data. Note that in the

traffic speed data the precision is also unknown to us and it cannot be fully captured by the inverse of variance of all observations.
Therefore, different from Salakhutdinov and Mnih (2008) which uses a fixed precision value, here we place a flexible conjugate
Gamma prior over to improve robustness of the model:

a bGamma( , ),0 0 (7)

where a0 and b0 are the shape parameter and the rate parameter, respectively. If a random variable x a bGamma( , ), we have
=p x x bx( ) exp( )b

a
a

( )
1a

.
Fig. 1 shows the overall graphical structure characterizing the data generation process of the Bayesian probabilistic CP decom-

position introduced above. Two graphical models are shown here as instances for third-order tensors ( =d 3, the left panel) and
fourth-order tensors ( =d 4, the right panel), respectively. In this graphical model, the shaded node xi (i ) represents the observed
data; U k( ) and are parameters; µ a, ,k k( ) ( )

0, and b0 are hyper-parameters. We place hyper-priors µ WGaussian-Wishart( , , , )0 0 0 0
on µ( , )k k( ) ( ) . These hyper-parameters should be set when initializing the sampling algorithm. We can derive Gibbs sampling al-
gorithm for model inference based on this graphical model.

Fig. 1. The probabilistic graphical models of CP decomposition for tensors.
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3.2. Gibbs sampling

Based on the work of Salakhutdinov and Mnih (2008), we next introduce a Gibbs sampling algorithm to perform inference on the
presented graphical model. Gibbs sampling is a widely used MCMC algorithm for Bayesian inference. The idea of Gibbs sampling is to
update all variables sequentially in each iteration. Each variable is sampled from its distribution conditional on the current values of
all other variables. The key of a Gibbs sampling algorithm is to define such distributions for all variables. These conditional dis-
tributions are often referred to as full conditionals.

Since we have used conjugate priors for parameters and hyper-parameters, the posterior distributions in the graphical model
presented in Fig. 1 can be derived analytically. Using a third-order ( =d 3) tensor as an example, we next derive the posterior
distributions for each parameter in closed-form based on its Markov blanket. The same analyses can be performed on a higher-order
tensor structure.

3.2.1. Sampling factor matrices U k( ) for =k 1, 2, 3
Essentially, the goal of sampling factor matrices is to capture the dependencies between observations xi (i ) and hyper-

parameters µ k( ) and k( ) ( =k 1, 2, 3). Given a partially observed tensorX × ×n n n1 2 3, we first define an indicator tensor B which is
of the same size as X , with each element bi being 1 if i and 0 otherwise.

The factor matrix U (1) is updated by sampling all ui
r(1)

1 ( i n1 1 1) one by one. Considering the Gaussian assumption in Eq.
(3), the likelihood can be written as

L X

=

= =

= =

{ }u

u u u

U U x x

b x

( , , , ) exp ( )

exp ( ( ) ( )) ,

i i

i i

i
i

n

i

n
b

i

n

i

n

i
T

i i

(1) (2) (3)

1 1
2

2

2
1 1

(1) (2) (3) 2

i
1

2

2

3

3

2

2

3

3

1 2 3
(8)

where the symbol represents Hadamard product. Note that only the sliceX ×i( , :,:) n n
1 2 3 is used to compute the likelihood term

in Eq. (8).
Combining Eqs. (8) and (4) gives us the posterior distribution, which can be also written in the form of a multivariate Gaussian

X L X N

N

×u µ u u µ

u µ

p U U U U( , , , , , ) ( , , , ) ( , ( ) )

( , )

i i i

i i i

(1) (2) (3) (1) (1) (1) (2) (3) (1) (1) (1) 1

(1) (1) (1)
1

1 1 1

1 1 1
(9)

where

= +

= +

= =

= =( )
u u u u

µ u u µ

b

x

^ ( )( ) ,

^ (^ ) ( ) .

i

i

i i
n

i
n

i i i i
T

i i i
n

i
n

i i

(1)
1 1

(2) (3) (2) (3) (1)

(1) (1) 1
1 1

(2) (3) (1) (1)

1 2
2

3
3

2 3 2 3

1 1 2
2

3
3

2 3 (10)

It should be noted that in Eq. (10) only the two terms xi and bi contain index i1. This allows us to sample all vectors ui
(1)
1

( i n1 1 1) inU k( ) in parallel. Following the same procedure deriving up ( )i
(1)
1 , we can also write the posteriors of ui

(2)
2 and ui

(3)
3 with

a similar derivation.

3.2.2. Sampling µ k( ) and k( ) for =k 1, 2, 3
For simplicity, here we only show the derivation for =k 1 as an example and other cases are equivalent. When sampling µ(1) and

(1) (see Fig. 1(a)), the likelihood of the factor matrix ×U n r(1) 1 can be factorized into the product of conditional distributions of n1
individual vectors:

L
=

{ }µ u µ u µU( , ) | | exp 1
2

( ) ( ) .
n

i

n

i
T

i
(1) (1) (1) (1) 2

1

(1) (1) (1) (1) (1)1

1

1

1 1
(11)

Given the likelihood term in Eq. (11) and the Gaussian-Wishart hyper-prior in Eq. (5), we can write down and factorize the joint
posterior distribution for hyper-parameters µ(1) and (1) as follows:

L N

N

× ×

×

µ µ µ µ µ

µ µ

p U W U W

W

( , , , , , ) ( , ) ( , ( ) ) Wishart( , )

( , ( ) ) Wishart( , ),

(1) (1) (1)
0 0 0 0

(1) (1) (1) (1)
0 0

(1) 1 (1)
0 0

(1) (1) (1) 1 (1)
0
(1)

0
(1)

(12)

where the parameters in these two distributions can be computed by:

X. Chen et al. Transportation Research Part C 98 (2019) 73–84

77



= + +

= +

= +

= +

+

+

u µ u µ

µ u µ

W n S W

n

n

n

¯ ( ¯ )

,

¯ ,

( ) ,

n
n

T

n

0
(1)

1
(1) (1)

0
(1)

0 0
1

1

0
(1)

1 0

(1) 1
1

(1)
0 0

(1)
1 0

(1)

1 0
1 0

1 0

(13)

where ū(1) and S(1) are two statistics defined as below:

= =
= =

( )u u u u u uS
n

¯ , 1 ¯ ¯ .
i

n

i
i

n

i i
T(1)

1

(1) (1)

1 1

(1) (1) (1) (1)

1

1

1
1

1

1 1

Above we have shown the derivation of the full conditionals for µ(1) and (1) used in Gibbs sampling. The same procedure can be
applied for =k 2 and =k 3.

3.2.3. Sampling precision
The likelihood of all observations is given by

L X { }U U U x x( , , , ) ( ) exp
2

( ) .
i

i i
(1) (2) (3) 1/2 2

(14)

Combining the likelihood term in Eq. (14) and the prior term in Eq. (7) will give the posterior of , which is also a Gamma
distribution parameterized by a0 and b0:

X L X ×p U U U a b U U U a b
a b

( , , , , , ) ( , , , ) Gamma( , )
Gamma( , ),

(1) (2) (3)
0 0

(1) (2) (3)
0 0

0 0 (15)

where = +a b ai i0
1
2 0 and = +b x x b( )i i i0

1
2

2
0.

3.3. Implementation

Above we have derived the full conditionals for all variables in the Gibbs sampling for a third-order tensor as illustrated in
Fig. 1(a). Following the same steps, one can also derive the Gibbs updating rules for a fourth-order tensor (Fig. 1(b)). All missing
values can be estimated from Monte Carlo approximation after the Gibbs sampling algorithm reaches stationary. We summarize the
Gibbs sampling algorithm of the BGCP model as below:

Input: a d-th order tensor X and the corresponding indicator tensor B .
Initialization: For hyper-priors, we set = = =µ W I0, 1,0 0 0 (identity matrix), = r0 (the low rank). For hyper-parameters, we initialize U k( ) with random

values ( = …k d1, , ), =a 10 , and =b 10 .
Repeat

For = …k d1, ,

Compute W k
0
( ) and k

0
( ) (Eq. (13)).

Sample WWishart ,k k k( )
0
( )

0
( ) .

Compute µ k( ) and k( ) (Eq. (13)).

Sample Nµ µ ,k k k( ) ( ) ( )
1
.

For = …i n1, ,k k (can be done in parallel)

Compute µik
k( ) and ik

k( )
(Eq. (10))

Sample Nu µ ,ik
k

ik
k

ik
k( ) ( ) ( )

1
.

End for
End for

Compute a0 and b0 (see Eq. (15)).

Sample a bGamma(^ , ^ )0 0 .
Until maximum number of iterations.
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4. Numerical experiment

4.1. Traffic speed data

To demonstrate the performance of this model, in this section we conduct numerical experiments based on a large-scale traffic
speed data set collected in Guangzhou, China. The data set is generated by a widely-used navigation app on smart phones. We make
the data set publicly available at https://doi.org/10.5281/zenodo.1205229. The data set contains travel speed observations from 214
road segments in two months (61 days from August 1, 2016 to September 30, 2016) at 10-min interval (144 time intervals in a day).
The speed data can be organized as a third-order tensor (road segment× day× time interval, with a size of × ×214 61 144). Among
the 1.88 million elements, about 1.29% are not observed or provided in the raw data. Fig. 2 shows the histogram of the observed
speed data, together with a Gaussian distribution fitted with maximum likelihood. As we can see, the speed data is well captured by a
Gaussian distribution without any extreme values, supporting the Gaussian assumption of the error term (a critical assumption).
Apart from our data set, the Gaussian distribution assumption for observations appears in many studies (e.g., Salakhutdinov and Mnih
(2008), Zhao et al. (2015a,b)).

Before estimating the missing entries, we first investigate the time-varying pattern of the traffic speed data set and show it in
Fig. 3. Fig. 3(a) shows the time window× date speed profile by averaging speed over 214 road segments. Fig. 3(b) shows the traffic
speed trends of the weekday (Monday through Friday) and weekend (Saturday and Sunday) by averaging observations over links and
days. Both panels show the differences between peak hours and off-peak hours clearly, and also between weekdays and weekends.
Traffic speed in the evening peak hours is much slower than in the early morning or in the night. Moreover, daily traffic speed trends
on the weekday (or weekend) are quite similar (see Fig. 3(a)), except that the traffic speed on the weekends is larger than that on the
weekdays, in particular during peak hours. Fig. 3(c) shows the detailed time-varying speed data on two road segments (#1 and #2).
As we can see, the traffic speed data shows both recurrent and non-recurrent patterns (e.g., Sept 15–17, Mid-Autumn Festival
holiday).

Since only 1.29% entries are not observed in the raw data, we create synthetic data by randomly removing a certain amount of
entries, and thus divide the raw data into two groups: the observed ( ) and the missing (removed). For these “missing” entries, we
also have the corresponding ground truth, which allows us to assess the imputation performance directly. The model performance is
evaluated by imputing those removed entries.

4.2. Missing data imputation

The imputation in the BGCP model is done by averaging multiple Gibbs runs after stationary:

X N
= =

p x
T

u u u( ) 1 , ,i
t

T

j

r

i jt i jt i jt
d

t
1 1

(1) (2) ( ) 1
d1 2

(16)

whereX is the observed data, xi is a missing entry, ui jt
d( )

d is i j( , )d -th entry in the factor matrix of the t-th Gibbs iteration (same for t),
and T is number of samples used.

In the numerical experiment, we compare the BGCP model with two other tensor decomposition-based imputation methods:

• high accuracy low-rank tensor completion (HaLRTC) (Liu et al., 2013), which is used in Ran et al. (2016), and
• SVD-combined tensor decomposition (STD) (Chen et al., 2018).

Note that we need to set tensor rank for the BGCP model, while HaLRTC and STD do not require additional parameters. The mean
absolute percentage error (MAPE) and root mean square error (RMSE) are used to evaluate model performance:

Fig. 2. Histogram of traffic speed observations associated with a Gaussian distribution N ix µ( , ),i
2 where =µ 39.01 and = 10.82.
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where n is the total number of missing entries, and xi and xi are the actual value of a missing entry and its imputation, respectively.
In the experiment, we would like to assess the performance of different models and different data representations under different

missing rate and also different missing scenarios (random missing vs non-random missing). In other words, we consider data re-
presentation a decision variable, and in practice one need to choose the most appropriate representation before choosing a model. In
doing so, we create a synthetic data set for each combination of missing rate and missing scenario.

4.3. Data representations

The structural representation of the tensor is also a crucial factor for us to consider. Based on the traffic speed data set, we propose
three different types of data representations:

(A) Matrix (second-order) representation of road segment× time interval, i.e., X ×214 8784. Here we organize the day× time in-
terval as a single time series.

(B) Third-order tensor representation of road segment× day× time interval, i.e., X × ×214 61 144.
(C) Fourth-order tensor representation of road segment× week× day of week× time interval, i.e.,X × × ×214 9 7 144. Here the 61 days

are organized as nine weeks (with two days missing).

Fig. 3. Multi-dimensional traffic speed sequences. (a) The heat-map shows averaged speed values over 214 road segments for each specific day and
time window. (b) The curves show averaged speed values over 214 road segments. (b) Examples of time series of traffic speed observations.
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4.4. Random missing v.s. non-random missing

For the random missing scenario, we just randomly remove some entries in representation (A) and reshape the matrix to re-
presentations (B) and (C). However, as mentioned, in field applications the missing data problem mainly results from various factors
such as hardware/software failure, network communication problems. Therefore, in practice, missing data often show correlated
corruptions over a period. To take this effect into account, we design a non-random missing scenario—fiber missing—following Chen
et al. (2018).

We first re-organize the traffic speed data into a third-order tensor (road segment× day× time interval). To create synthetic data
for the fiber missing scenario, we randomly select some combinations of road segment× day and remove the corresponding time
interval vectors from the tensor. This gives us a fiber missing scenario following representation (B), and we can easily reshape this
tensor to representations (A) and (C). Essentially, in the fiber missing scenario, we lose more information than the random missing
case (even with the same number of missing entries) and it gets more difficult for a tensor-based algorithm to perform imputation
tasks.

4.5. Results

The Matlab code for numerical experiments is available at https://github.com/lijunsun/bgcp_imputation. Our first experiment
examines the performance of different models and different representations in the random missing scenario. Note that here we also
consider choosing the right data representation as a decision to make in field applications and we are interested in not only iden-
tifying the best model but also the best data representation. Since STD mainly address the non-convexity problem, it does not offer too
much improvement in the matrix representation (A), and for the fourth-order tensor (C). Therefore, we only apply the STD model to
the third-order tensor representation (B) in the comparison.

We create five synthetic data sets with missing rates ranging from 10% to 50%. For the BGCP model, we run the MCMC sampling
algorithm for 1500 iterations. We find that the values of those parameters and hyper-parameters typically stabilize after a few
hundred iterations. Although the BGCP model is a latent class model, we have not observed evident label switching phenomenon in
our case. We take the first 1000 as burn-in and estimate those missing entries based on the last 500 iterations ( =T 500). Note that we
do not conduct thinning since the correlation does not matter for making predictions when choosing a large T.

Table 1 shows the imputation performance of BGCP, HaLRTC, STD and other models under different missing rates and different
data presentations. DA (daily average) fills the missing value with an average of observed data (over different days) for the same road
segment and the same time window (Li et al., 2013). kNN is another baseline method where the neighbors refers to road segments.
We compute pairwise Euclidean distance (a full vector has ×61 144 elements and missing entries are not considered) and quantify the
performance of kNN by varying the size of neighbors ( = …k 2, , 20). The minimum RMSE is achieved when =k 10. From Table 1,
daily average and kNN are combated by the state-of-the-art tensor completion models. Since the traffic speed still encodes sufficient
redundant information in the random missing scenario, we run the BGCP model with a large rank ( = =r r50, 80, and =r 110) for
better performance. Due to the high computational cost for the fourth-order tensor, we only apply =r 50 for representation (C).

Overall, we do find that data representation profoundly affects overall imputation performance. The third-order tensor re-
presentation (B) is demonstrated to be the best algebraic structure to model the traffic speed data. The matrix representation (A) is
less effective than both third-order (B) and fourth-order (C) tensors. This might result from the fact that the model requires a large
number of factors and parameters ( ×r 8784) to capture the variation over the whole period. The HaLRTC model outperforms the
BGCP model at a low missing rate (10–20%); however, HaLRTC is highly sensitive to different missing rates. The BGCP model, on the

Table 1
The imputation performance of BGCP, HaLRTC, STD, DA (daily average) and kNN for three data representations in the random missing scenario
(best models are highlighted in bold).

10% 20% 30% 40% 50%

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

(A) BGCP(50) 0.0937 3.9981 0.0952 4.0467 0.0962 4.0903 0.0976 4.1457 0.0997 4.2242
BGCP(80) 0.0925 3.9483 0.0941 3.9958 0.0951 4.0449 0.0968 4.1091 0.0990 4.1919
BGCP(110) 0.0920 3.9303 0.0937 3.9790 0.0948 4.0292 0.0965 4.0937 0.0986 4.1731
HaLRTC 0.0957 3.9666 0.0976 4.0232 0.0991 4.0820 0.1009 4.1467 0.1035 4.2337
DA 0.1213 5.1778 0.1218 5.1905 0.1217 5.1977 0.1217 5.1993 0.1221 5.2113
kNN(10) 0.1303 5.1101 0.1314 5.1486 0.1322 5.1966 0.1333 5.2565 0.1356 5.3573

(B) BGCP(50) 0.0862 3.7097 0.0867 3.7199 0.0867 3.7298 0.0867 3.7317 0.0871 3.7466
BGCP(80) 0.0823 3.5614 0.0827 3.5660 0.0827 3.5775 0.0829 3.5851 0.0833 3.6009
BGCP(110) 0.0795 3.4521 0.0798 3.4531 0.0799 3.4655 0.0801 3.4756 0.0807 3.5042
HaLRTC 0.0777 3.1917 0.0815 3.3324 0.0850 3.4748 0.0887 3.6143 0.0931 3.7730
STD 0.0888 3.7708 0.0911 3.8308 0.0936 3.9286 0.0963 4.0265 0.0993 4.1253

(C) BGCP(50) 0.0896 3.8517 0.0900 3.8540 0.0898 3.8548 0.0900 3.8608 0.0903 3.8740
HaLRTC 0.0776 3.1716 0.0817 3.3231 0.0857 3.4802 0.0900 3.6397 0.0951 3.8259
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other hand, shows stable performance over varying missing rates for all these three representations.
In the second experiment, we present a more realistic temporally correlated missing scenario. Here we adopt the fiber missing

experiments presented in Chen et al. (2018). The DA and kNN algorithms are implemented in the same way as in our first experiment.
For kNN, the minimum RMSE is achieved when =k 13. Due to the temporally correlated corruption in the fiber missing scenario, it
becomes difficult to borrow information from other dimensions. Hence, we choose a smaller CP rank ( =r 15 and =r 20) to char-
acterize the main factors better and avoid overfitting. As the results in Table 2 show, the BGCP model and the third-order tensor
representation (B) clearly outperforms other models and structures in this fiber missing scenario. In terms of the CP rank, we find that

=r 20 works better than =r 15 when missing rate is less than 30%. As mentioned, the fiber missing case is more complicated to deal
with since information is lost in a correlated manner. Therefore, we suspect that a larger rank may result in overfitting when is
large. Fig. 4 takes road segment #1 as an example and shows the imputation performance of BGCP with =r 15 and = 30%. The
missing fibers are shown as red windows in this figure. The BGCP model works well in reproducing the recurrent and non-recurrent
traffic speed data by borrowing information from other days and other road segments.

What is the most appropriate data representation for the missing data imputation task? In Ran et al. (2016), the authors suggest
that defining an additional “week” dimension (representation (C)) may help achieve better performance than applying decomposition
on structures aggregating days of several weeks as one dimension, while our experiment prefers the use of aggregated third-order
tensor along the temporal dimension (B). As can be seen from Table 1, the third-order representation (B) generally shows the best
performance, although fourth-order (C) performs slightly better under the HaLRTC model with missing rate = 10%. Moreover,

Table 2
The imputation performance of BGCP, HaLRTC, STD, DA and kNN for three data representations in the fiber missing scenario (best models are
highlighted in bold).

10% 20% 30% 40% 50%

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

(A) BGCP(15) 0.1011 4.2458 0.1013 4.2674 0.1020 4.3162 0.1031 4.3915 0.1055 4.4952
BGCP(20) 0.1005 4.2307 0.1010 4.2755 0.1017 4.3229 0.1031 4.4124 0.1055 4.5070
HaLRTC 0.1015 4.1322 0.1022 4.1716 0.1035 4.2372 0.1057 4.3232 0.1090 4.4472
DA 0.1208 5.1128 0.1207 5.1353 0.1200 5.1408 0.1196 5.1434 0.1211 5.2018
kNN(13) 0.1342 5.1714 0.1340 5.1983 0.1346 5.2591 0.1388 5.4405 0.1445 5.6516

(B) BGCP(15) 0.0992 4.1760 0.0995 4.1949 0.0999 4.2425 0.1001 4.2881 0.1030 4.4199
BGCP(20) 0.0980 4.1413 0.0984 4.1477 0.0980 4.1857 0.1006 4.4556 0.1036 4.6496
HaLRTC 0.1033 4.1576 0.1046 4.2086 0.1062 4.2792 0.1088 4.3813 0.1131 4.5271
STD 0.1019 4.1881 0.1054 4.3300 0.1068 4.4029 0.1115 4.5573 0.1133 4.6291

(C) BGCP(15) 0.1039 4.3397 0.1030 4.3199 0.1026 4.3426 0.1040 4.4158 0.1051 4.4586
BGCP(20) 0.1019 4.2691 0.1018 4.2861 0.1014 4.3158 0.1025 4.4291 0.1062 4.6320
HaLRTC 0.1089 4.3367 0.1109 4.4173 0.1136 4.5303 0.1178 4.7054 0.1243 4.9463

Fig. 4. The imputation performance of BGCP (CP rank =r 15 and missing rate = 30%) under the fiber missing scenario with third-order tensor
representation (B), where the estimated result of road segment #1 is selected as an example. In the both two panels, red rectangles represent fiber
missing (i.e., speed observations are lost in a whole day).
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structure (B) provides consistently good imputation performance with the increase of missing rate. The fiber missing scenario further
proves the superiority of third-order tensor (see Table 2). Using the HaLRTC model as an example, structure (C) clearly goes in the
wrong direction when the missing rate reaches = 40% and = 50%.

The major difference between representations (B) and (C) is that (C) has taken the weekly effect into account explicitly, while the
third-order tensor (B) only captures the hidden patterns in days and does not model the homogeneity and heterogeneity among
different weeks. Our results suggest that the day and the time interval dimensions are sufficient to characterize the time series of
traffic speed data. The “week” dimension does not exhibit enough variation for the decomposition model to define r latent factors on
it, and as a result, it is not necessary to define this dimension. A well-known drawback of Bayesian methods is the computational cost
in Markov chain Monte Carlo sampling. In our case, the BGCP model is also comparable with HaLRTC and STD. Each Gibbs iteration
in BGCP takes less than one second if rank r 80. In this case, training the model for 1,500 Gibbs iterations takes less than half an
hour, while HaLRTC and STD in general take more than half an hour to converge.

5. Conclusions and discussion

In this paper, we present the Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) decomposition model—as an extension of
Bayesian probabilistic matrix factorization—to impute multi-dimensional incomplete traffic data. Since the same data set can be
summarized into different structures (matrix, third-order tensor, and fourth-order tensor), we also consider data representation as a
decision variable in field applications. Using a spatiotemporal traffic speed data set collected in Guangzhou, China, we compare the
BGCP model with two other tensor completion methods: HaLRTC (Liu et al., 2013) and STD (Chen et al., 2018).

We design two missing scenarios: the random missing scenario and a more realistic fiber missing scenario to capture the tem-
porally correlated corruptions in the traffic data. From the empirical analyses, we find that the BGCP model shows consistent/robust
performance in both the random missing scenario and the fiber missing scenario. This fully Bayesian model has several advantages
over other methods: (1) it allows us to have a robust imputation of missing values with prediction confidence taken into account; (2)
by placing flexible priors/hyper-priors on model parameters/hyper-parameters, the Bayesian model can efficiently and automatically
characterize the variation in the data and avoid overfitting.

In terms of tensor representation, we find that a third-order (road segment× day× time interval) gives the best results in both
random missing and fiber missing scenarios. Ideally, the use of an additional dimension seems to be helpful, but this should be
conditional on the fact that the additional dimension captures enough heterogeneity (latent factors). However, in our case, the week-
to-week variation in the traffic speed data seems to be minor, and thus the week dimension does not require as many latent patterns
as other dimensions. This finding is in contrast to the experiments of Ran et al. (2016), which suggests the use of a “week” dimension
may achieve better performance.

The foundation of all tensor decomposition-based methods is the low-rank assumption. The traffic speed data set clearly shows
this property and enables those tensor models to have good performance in our experiment. However, given the strong spatio-
temporal correlation in urban traffic data, we can develop new models with increased flexibility and generalization power. We
propose the following directions for future research:

• Determine the rank r in the BGCP model. In the case of random missing, we prefer choosing a larger r since the observed data still
encodes a lot cross-dimensional information given the low-rank assumption. However, since information is lost in a temporally
correlated manner in the fiber missing scenario, it becomes difficult to borrow information from other dimensions. Therefore, we
prefer choosing a smaller r to characterize the main factors and avoid overfitting in the fiber missing case. One potential question
is how to choose an appropriate rank r in different situations. As a future research topic, we would like to explore the use of non-
parametric Bayesian methods (e.g., Dirichlet process) to determine r automatically given the size and complexity of the data.
• Develop a Bayesian Tucker Decomposition model. The CP decomposition may require a large number of redundant factors (r)
when the data set gets larger, in particular when the numbers of latent factors of different dimensions are imbalanced. The Tucker
decomposition can share factors across different dimension and thus is able to capture more information with less number of
factors. For this topic, a critical challenge is to develop efficient MCMC/variational inference algorithms.
• Integrate spatiotemporal information explicitly in the decomposition model. One limitation of the factorization/decomposition-
based models is that they only capture spatiotemporal patterns in a data-driven way, instead of physically coding the patterns. As
a result, the model itself is invariant to random permutation on each dimension (or even on all the dimensions one by one). This
fact inspires us to explicitly encode the external information such as spatial adjacency (e.g., using spatial auto-regressive (AR)
models/graph embedding) and temporal correlation (e.g., using time series models) into the modeling framework.
• Apply this model for prediction tasks. While this paper only investigates the imputation problem for historical data, a more
interesting problem is how to apply this framework for prediction tasks. Besides the dynamic tensor completion approach (Tan
et al., 2016), a potential research direction is to integrate a physical prediction model (e.g., auto-regressive (AR), auto-regressive
moving average (ARMA), and auto-regressive integrated moving average (ARIMA)) into the temporal dimension of the tensor to
forecast future observations.
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