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ARTICLE INFO ABSTRACT

Keywords: Emerging smart transportation applications are calling for publishing and sharing individual-
Mobility traces based mobility trace data sets to researchers and practitioners; in the meanwhile, however,
Privacy protection privacy issues have become a major concern given that true identities of individuals can be easily

License plate recognition data
Disclosure risk

k-anonymity

Data utility

revealed from these data sets. Data synthesis In this paper, we quantitatively measure the risk of
privacy disclosure in mobility trace data set caused by re-identification attacks based on the
concept of k-anonymity. Using a one-month license plate recognition (LPR) data set collected in
Guangzhou, China, we examine a variety of factors determining the degree of anonymity of an
individual, including the temporal granularity and the size of the published data, local v.s. non-
local vehicles, and continuous v.s. non-continuous observations. We find that five spatiotemporal
records are enough to uniquely identify about 90% of individuals, even when the temporal
granularity is set to be half a day. To publish LPR data without compromising privacy, we
propose a suppression solution and a generalization solution and quantify the privacy-and-utility
trade-off of them. Our results show that the suppression solution, which removes sensitive re-
cords, have a notable performance on privacy protection. The average individual anonymity
identified by three spatiotemporal records increases by more than 20% at the cost of losing less
than 8% of the data. We also propose a bintree-based adaptive time interval cloaking algorithm
as a generalization solution. To meet a specific anonymity constraint, this algorithm adjusts the
temporal resolution adaptively based on traffic counts under the principle of minimal informa-
tion loss. We find that the generalization algorithm performs extremely well in satisfying dif-
ferent user-specified anonymity constraints and it is more flexible and reliable than the tradi-
tional uniform time interval cloaking method. We also find a strong correlation between the
resulting temporal accuracy of data anonymized by the algorithm and the traffic condition. This
study serves as a reminder to relevant agencies and data owners about the privacy vulnerability
in individual-based mobility trace data sets and provides methodological guidance when pub-
lishing and sharing such sensitive data set.

1. Introduction

With the advances in sensor technology, identity detection-based intelligent transportation systems—such as license plate re-
cognition (LPR)—have become widely applied in urban transportation, generating large quantities of individual-based mobility trace
data set (Herrera et al., 2010). Given the high frequency, great precision, and extensive coverage, these mobility trace data sets have
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provided new opportunities to a wide range of transportation research questions, from transportation planning, to traffic control and
management, to individual mobility pattern profiling. Essentially, the LPR system is a network of cameras that can take pictures of
every passing vehicle and transform the image into a detailed spatiotemporal record automatically, capturing vehicle data in real-
time with high precision and wide coverage. The information in an LPR record includes license plate number (vehicle ID), the
timestamp when vehicle captured by the camera, detector ID (representing different camera gantries), and driving direction of the
vehicle. Therefore, LPR system collects the location information of each vehicle and it allows us to reconstruct the trajectories of each
individual vehicle by summarizing a series of spatiotemporal records. Apart from individual mobility, the LPR also play an essential
role in estimating aggregated traffic flow variables (e.g., flow, speed, and density) at a network scale, which is critical to a wide range
of intelligent transportation system (ITS) applications such as travel demand prediction, trip planning, travel time estimation, route
planning, ride sharing, transit service scheduling, signal control, and disruption management. Due to these advantages, the system
has attracted considerable attention in the past few years (see e.g. Shao and Chen, 2018; Zhan et al., 2015; Chen et al., 2017). Despite
the increasing interest in using LPR data for research purposes, their applications are still very limited mainly due to privacy issues/
concerns"? that restrict agencies/data owners to publish and share the raw data.

Although one can replace license plate numbers by random identifiers as a simple anonymization strategy, many previous studies
have demonstrated its vulnerability in many data sets across different fields/applications: most individuals can be easily re-identified
from only a few observations. For example, Golle (2006) found that 87% of the populations in the US can be uniquely identified by
the combination zip-code, gender, and date of birth. Location privacy disclosure occurs when individuals are re-identified by linkage
attack from an anonymized travel behavior data sets (spatiotemporal mobility traces). Ma et al. (2013) indicated that an adversary is
able to identify the trace of 30%-50% of the victims when she has collected 10 pieces of side information about a victim. Sun et al.
(2013) proposed the traffic-knowledge-based adversary model which provided a high probability of successfully linking different
anonymized traces between several consecutive intersections. de Montjoye et al. (2015) showed that, in a credit card metadata set,
90% users can be uniquely re-identified by using only four spatiotemporal points with the temporal resolution of one day, and the
rate can be even higher if the transaction costs are included. Zang and Bolot (2011) examined a large-scale data set of call details
records and showed that the top two visited locations are highly likely to be home and work locations, suggesting that individual’s
personal location information such as home/work location can be easily inferred from historical trajectory data. Therefore, devel-
oping new solutions to provide privacy protection before publishing and sharing individual-based data sets is an essential research
question. Suppression and generalization are the most popular two anonymization approaches for privacy protection (Sweeney,
2002a). Suppression involves removing extreme cases from the original data set to avoid re-identification, while the idea of gen-
eralization is to replace or recode a value with a less specific but semantically consistent value. However, for both suppression and
generalization, privacy is preserved at the cost of sacrificing data utility and analytical validity. An excellent data publishing/sharing
solution should take into account the balance between the degree of privacy protection and the utility/usefulness of the data set itself.
Therefore, it is critical to exploring possible solutions to enhance privacy protection in individual-based mobility trace data set and to
investigating the privacy-and-utility trade-off of the publishing solutions.

In this paper, we first quantitatively measure to what extent an individual can be re-identified in mobility trace data sets. In doing
so, we use a large LPR data set collected from Guangzhou, China, consisting of 260 million spatiotemporal transactions generated by
14 million vehicles in one month. We quantify the privacy disclosure risk of this data set based on the concept of k-anonymity
(Sweeney, 2002b). Then, we examine a variety of factors that may impact an individual’s degree of anonymity, including the
temporal granularity, the size of the published data, the anonymity differences between local and non-local cars and the anonymity
identified by continuous records. Finally, both a suppression solution and a generalization solution are proposed to design privacy-
preserved publishing/sharing scheme for LPR data set, and we also explore the privacy-utility trade-off in these two solutions. The
suppression solution removes sensitive records from individual’s trace set to meet a specified anonymity constraint. For the gen-
eralization solution, we proposed an adaptive bintree-based cloaking algorithm that increases the temporal granularity of location
information under the principle of minimum information loss to meet a specified anonymity constraint. To the best of our knowledge,
this is the first study that (1) empirically measures the disclosure risk of a large-scale LPR data set from urban transportation systems,
and (2) provides privacy-preserved LPR data publishing/sharing/processing solutions with the utility/value of data taken into ac-
count.

The remainder of this paper is structured as follows. Section 2 reviews the application of LPR data in transportation research and
gives an overview of previous research on privacy protection in individual-based data sets. The notations used throughout this paper
are summarized in Section 3. Then, Section 4 introduces the LPR data set and the data preprocessing. Section 5 introduces the k-
anonymity model and gives a detailed description of the threat model. We explore the effects of different factors determining
individual anonymity in Section 6, and propose a suppression solution and a generalization solution for publishing/sharing LPR data
in a privacy-preserved way in Section 7. In this section, we also examine the privacy-and-utility trade-off of those two proposed
solutions. Finally, Section 8 presents concluding remarks and possible future research directions.

2. Literature review

In this section, we enumerate some applications of LPR data in transportation research and provide background on the classical

! https://www.theatlantic.com/politics/archive/2016,/01 /vigilant-solutions-surveillance/427047 /.
2 https://www.wired.com/2015/05/even-fbi-privacy-concerns-license-plate-readers,/.
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fundamental privacy model and framework. The privacy issue of the publication of time-series trajectory data has also raised major
concern in recent years. In addition, LPR data is essentially one of the individual-based spatiotemporal mobility trace data. Therefore
works on the related issue of time-series trajectory sanitization thereof are also reviewed.

2.1. LPR data in transportation research

As an emerging ITS framework, LPR systems generate large quantities of spatiotemporal data in daily transport operations. These
data sets provide the transportation research community with new opportunities to solve many real-world problems. In the following,
we briefly review some representative work founded on LPR data. Shao and Chen (2018) applied tensor decomposition on spatio-
temporal LPR data to estimate traffic volume. This method effectively solved the sparsity problem in traffic volume data. A lane-based
real-time queue length estimation model using LPR data was proposed in (Zhan et al., 2015), which shows good performance on both
precision and immediacy. Chen et al. (2017) applied K-mean clustering algorithms on LPR data to discover the underlying vehicle
travel patterns. Sun et al. (2019) developed a two-dimensional laten Dirichlet allocation (LDA) model to discover underlying patterns
and detect anomalies in individual travel behavior and demonstrate the effectiveness of the proposed modeling framework on a
license plate recognition data set.

Despite its evident utility, the privacy issue is still the main obstacle preventing agencies from publishing and sharing the LPR
data. Recently, the privacy issues in mobility trace data publishing and location information gathering under specific transportation
applications have gained more and more attention in the literature (Cottrill and Vonu Thakuriah, 2015; Antoniou and
Polydoropoulou, 2015; Zangui et al., 2013; Hu et al., 2019; Belletti and Bayen, 2018). Both Cottrill and Vonu Thakuriah (2015) and
Antoniou and Polydoropoulou (2015) conducted a stated-preference survey to obtain the perception of consumers towards privacy
risk. Cottrill and Vonu Thakuriah (2015) applied Principal Components Analysis (PCA) to investigate factors (both personal and
contextual considerations) affecting privacy preferences (e.g., benefits, willing to trade and compensation related to mobile and
locational technologies). Based on the survey data, Antoniou and Polydoropoulou (2015) adopted some economic concepts, i.e.,
indifference curve and marginal rate of substitution, to quantify the value of privacy. The analysis results show that the mean of the
value of privacy is 2.87 €. Although their findings intuitively reflected users’ perception of privacy risk, both of them may not be of
much help to the fundamental privacy preservation of location information publishing/sharing, as the value of privacy was only
explored from the perspective of consumer/user in general terms. Noting the raising privacy concerns of travelers in the application
of congestion pricing, Zangui et al. (2013) proposed a new type of congestion pricing considering users’ specific travel characteristics
and attributes. The privacy costs of users choosing location-specific pricing schemes, and consequently, providing their location
information were integrated into their generalized OD travel costs and the total toll revenue in road network was minimized to find
the optimum pricing scheme. Similarly, Hu et al. (2019) considered different levels of privacy cost among different location-based
service (LBS) user groups and proposed an incentive mechanism to encourage users to provide their location/trajectory information.
The incentive model with user stochastic equilibrium was then developed and solved to capture the mixed behavior of groups with
different privacy levels. Zangui et al. (2013) and Hu et al. (2019) provided great demonstrations of addressing privacy concern under
specific transportation applications. Regrettably, however, both of them only conducted experiments on the theoretical level and
didn’t verify their frameworks on actual mobility trace data. Moreover, a vital part of their works is how to quantify the privacy risk
in specific location and link to obtain the corresponding privacy cost, which is the problem we aim to address in this paper. Recently,
focus has been also increasingly centered on the privacy preservation in location-based services (LBS). Avodji et al. (2016) proposed a
decentralized architecture to compute meeting points in ridesharing service while protecting the privacy of location data of users.
Belletti and Bayen (2018) devised a constrained integer quadratic program (CIQP) to solve the on-demand traffic fleet optimization
problem in Mobility as a Service (MaaS) and strong privacy standards were guaranteed by using the dual splitting approach in the
optimization process. These works provided vigorous technical guidance for location-based service (LBS) operators on preserving
their user’s privacy.

Recently, there are a number of studies focusing on privacy issues in the context of LPR data (Laine et al., 2009; Hier and Walby,
2011; Warren et al., 2013; Newell, 2014). Laine et al. (2009) summarized several types of privacy risks surrounding the use of LPR
system and made recommendations for governing an agency’s operation of a LPR system. Hier and Walby (2011) assessed the policy
setting of public-area streetscape video surveillance system in Canada. Warren et al. (2013) examined privacy as a technique for
governing road traffic surveillance using case studies of LPR in Canada and Australia. Newell (2014) investigated the trade-off
between the personal information privacy and the efficacy of law enforcement in automated LPR system. However, they only describe
the privacy risk of LPR data in a qualitatively way and present some solutions at the policy and administrative level.

2.2. Fundamental privacy framework

In the general field of privacy research, there is a large body of literature committed to designing privacy-preserved data pub-
lishing and sharing strategies. Sweeney (2002b) proposed the most famous k-anonymity privacy protection model. k-anonymity
model is one of the most initial attempts in privacy protection and is used as a base for most of the privacy protection models. We call
a data set having k-anonymity if each individual is indistinguishable from at least k — 1 others in the data set. Consequently, a larger
anonymity requirement k guarantees a higher level of privacy. To achieve k-anonymity protection of an anonymized data set,
suppression and generalization techniques are usually applied (Sweeney, 2002a). k-anonymity ensures that anonymized individuals
cannot be re-identified by linking attacks. But it fails to provide strong privacy protection and have some limitations (Domingo-Ferrer
and Torra, 2008). For instance, the vulnerabilities of k-anonymity model are exposed when encountering two typical attacks: the
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homogeneity attack and background knowledge attack, respectively. Homogeneity attack occurs when there is little diversity in the
sensitive attributes in a k-anonymous table. An attacker can consequently discover the values of sensitive attributes of anonymized
subjects. Background knowledge attack happens in the situation that the data recipients possess much specific background knowl-
edge. The anonymized individual can still have high probabilities of being re-identified by combining the anonymous table with these
background knowledge. Considering the shortcomings of it, many researchers devoted to improve the original k-anonymity property
and proposed a number of sophistications of k-anonymity (Truta and Vinay, 2006; Wong et al., 2006; Machanavajjhala et al., 2006; Li
et al., 2007). Machanavajjhala et al. (2006) proposed the [-diversity to defend against the homogeneity attack and the background
knowledge attack on k-anonymity. Li et al. (2007) further improved the k-anonymity and proposed t-closeness to solve the attribute
disclosure vulnerabilities inherent to I-diversity. Although many efforts were made to further enhance the k-anonymity model,
neither k-anonymity nor its evolutions are entirely successful in ensuring that no privacy leakage occurs while keeping a reasonable
data utility level (Domingo-Ferrer and Torra, 2008). The differential privacy protection model proposed by Dwork (2008) overcame
the defects of the traditional privacy protection model and became a research hotspot in the field of privacy protection. Differential
privacy is a statistical property about the behavior of the privacy mechanism and therefore is independent of the computational
power and auxiliary information available to the adversary/attacker. One common technique to achieve differential privacy is by
adding an amount of noise (Laplacian noise/Guassian noise) that grows with the complexity of the query sequence applied to the
database. Although differential privacy was proved to provide rigorous privacy guarantee and immune to the background knowledge
attack, most works on it focus on traditional relational data and are still limited to a very few primitive data application scenarios.
Furthermore, the randomized mechanisms (by adding noise) cannot maintain data truthfulness, which is critical for some specific
data mining tasks (e.g., auditing, data interpretation, and visual data mining).

2.3. Trajectory and sequential data sanitization

In recent years, the privacy issue has become the major concern of publishing and sharing trajectory data as a consequence of the
increasing demand of it in extensive research in trajectory data mining. To date, several studies have investigated the anonymization
of sequential locations under k-anonymity. Many researchers have utilized suppression or generalization techniques to realize
anonymization of trajectory data while maintaining data utility as much as possible (Gruteser and Grunwald, 2003; Terrovitis and
Mamoulis, 2008; Shin et al., 2010; Chen et al., 2013). Gruteser and Grunwald (2003) proposed an adaptive quadtree-based algorithm
that decreases the spatial resolution of location information to meet a specified anonymity constraint. Shin et al. (2010) split user’s
trajectory and generalized the segmented trajectory to a spatiotemporal region to ensure trajectory k-anonymity. But both of them
were focused on the anonymization of trajectory in the context of location-based services (LBS) in which the anonymity requirement
is a local constraint (over a specific time duration and in a specific region) instead of a global one. While our work dedicates to realize
k-anonymity protection of the whole LPR data set. The adversary may possess external information about any detectors over the
released time period of data, which requires a global anonymization of individual’s trajectory. Furthermore, spatial generalization is
not applicable in the sanitization of LPR data set in which individual’s location is represented by stationary detector’s location.
Terrovitis and Mamoulis (2008) devised a data suppression technique to prevent privacy leakage in the publication of trajectory
database. Chen et al. (2013) first introduced local suppression to trajectory data anonymization to prevent individual’s privacy
against both identity linkage attack and attribute linkage attack under the framework of (K, C).-privacy. The (K, C).-privacy model
assume that the adversary’s prior knowledge is limited to at most L attributes in quasi-identifier (Mohammed et al., 2009). While in
our assumption the adversary probably possess the knowledge of any spatiotemporal information of every vehicle in the LPR data set.
Local suppression is examined to be superior to global suppression at the aspect of preserving data utility. However, a major problem
with it is the expensive computational cost of finding valid suppression items, especially for the large trajectory database.

As the emerging privacy standard providing rigorous privacy guarantee against arbitrary background knowledge, differential
privacy has been recently adopted to trajectory data sanitization (Chen et al., 2012, 2013; Hua et al., 2015). Chen et al. (2013)
proposed a differentially private data sanitization approach based on a hybrid-granularity prefix tree structure for the transit data
publication. The inherent consistency constraints of the prefix tree were utilized to conduct constrained inferences for better data
utility. They extended the proposed approach by using variable-length n-gram model to sanitize general sequential data (Chen et al.,
2012). There is no denying that the approach proposed by Chen et al. (2013, 2012) provides a new direction for sequential data
sanitization under the framework of differential privacy. Nevertheless, as a consequence of the sanitization mechanism that adding
noises to the real counts of prefixes or n-grams to guarantee differential privacy, an implicit assumption of it is that the raw tra-
jectories to be published contain a large volume of common prefixes or n-grams. If these counts are very small, the added noises
become relatively large and can compromise the truthfulness and utility of data. Unfortunately, although LPR data is much like
transit data in terms of data type (i.e., both of them are collected by stationary detectors), LPR data does not follow this assumption.
This is because the connectivity of road network is much higher than that of the public transit network. For instance, there are usually
only a few of bus/metro lines between one’s origin and destinations station. But she has multiple route choices when driving to her
destination. Therefore, the frequencies of individual trajectories, prefixes and n-gram are extremely small. Hua et al. (2015) removed
this assumption and proposed a differentially private publishing mechanism for more general time-series trajectories by generalizing
the trajectories, i.e., dividing locations into several groups and replacing all locations within the same group with their centroid.
However, as mentioned before, the spatial/location generalization is not applicable to LPR data in which individuals’ locations are
represented by locations of detectors. Since the location information of LPR data at detector level is of vital importance in many
transportation researches, e.g., traffic volume estimation and traffic signal timing optimization, it is unacceptable to further gen-
eralize individuals’ locations in LPR data set. Overall, although several studies have investigated trajectory and time-series data
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Notations

Description

About LPR dataset
T

t

14

N=1VI
Vi@i=1,..,N)
RIG=1, um)
Ri={R/lji=1, ..n}
n; = IR;l

TR = {Rili = 1, ..,N}
TRN=100k

Time span of the LPR data

Temporal granularity of the LPR data
Set of vehicles in the published data set
Number of vehicles in published data set
Vehicle i in V

A spatiotemporal tuple record of V;

Trajectory (set of all spatiotemporal records) of V;

Number of spatiotemporal records in R;
Set of all vehicle trajectories R; (i = 1, ...,N)
The experimental data set with 100,000 vehicles

TRN=50k The experimental data set with 50,000 vehicles

TRN=10k The experimental data set with 10,000 vehicles

TRr=2wk The experimental data set over first two weeks with 12,431 vehicles with monthly records larger than 1000
TRT=4wk The experimental data set over first four weeks with the same 12,431 vehicles in TRr—awk

About k-anonymity model
Qr Quasi-identifier set of Vi with [ records
l

A = (VuIQI} C Ry, Vy € V}

Number of spatiotemporal records in QI
Anonymity set of V; identified by QI}.

K; = Al Anonymity value of V;.

Two possible solutions

SR: Sensitive records with anonymity set less than ¢

AGR; Anonymity gain ratio after removing SR,

DLR, Data loss ratio caused by removing SR,

Kmin Uniform minimal anonymity constraint

tinit Initialized time interval to aggregate data records (given in minutes)
81, 62, -.sOn Initialized time periods with identical time interval finj

1> 925 - qp Traffic counts of &;, 82, ...,0n

81, 85, .6, Aggregated time periods by our algorithm

qi> G- -+dm Traffic counts of &y, 52, ...,0m

Topt = {0, @ v Tmt1} Optimal splitting scheme

D Set of data records generated from a specific location in a specific day
TI(D, Topt) Information loss of D caused by splitting scheme Typt

sanitization approaches under differential privacy model, there is still a dearth of an efficient data-dependent differentially private
sanitization method for LPR data.

We aim at quantifying privacy vulnerability of individual mobility trace data and provide efficient and practical technique
guidances for data holder to publish and share this type of data (take the example of LPR data) in this paper. Consequently, we adopt
the concept of anonymity to quantify the privacy disclosure risk of each individual in the LPR data set and propose practical solutions
for publishing and sharing LPR data under the framework of k-anonymity. Although there are some flaws in the k-anonymity privacy
protection model, it still becomes the most favorite indicator due to its natural accessibility and strong interpretability. In particular,
k-anonymity is found to be an intuitive and effective indicator to evaluate privacy vulnerability in recent studies (de Montjoye et al.,
2015; Zang and Bolot, 2011; de Montjoye et al., 2013). Based on the concept of k-anonymity, this work is dedicated to providing a
quantitative framework to reveal the privacy disclosure risk in LPR data sets. More importantly, to provide technical guidance for
privacy protection of LPR data set. Both suppression and generalization solutions are proposed to achieve k-anonymity privacy
protection, and the trade-off between utility and privacy protection are explored.

3. Notations

We use the notations listed in Table 1 throughout this paper.

4. License plate recognition data

We use the anonymized LPR data collected from Guangzhou, China in March 2017. In this data set, each anonymized ID re-
presents a unique license plate number. Overall, the data set contains 260 million records from 14 million vehicles. In total, there are
516 unique stationary gantries (detectors). Fig. 1 shows the road network of Guangzhou, in which the lines in different colors show
different categories of roads and the colored dots represent detectors. Table 2 lists the primary fields in an example LPR record.

As can be seen from Table 2, the original passing timestamp is coded in a high resolution of one second, while in practice one
cannot release the data at such a high temporal resolution. Such a high resolution is not necessary for traffic information retrieval/
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—— Highway
Expressway
— Arterial
Sub-Arterial
Collector
Fig. 1. Road network and distribution of LPR system in Guangzhou.
Table 2
Primary fields in the LPR data set.
Field Example value
Vehicle ID 5ac0bd6239f8b9ac (anonymized)
Passing timestamp 2017-03-01 03:59:07
Address Inner Ring Road, Meizhou Building (East to West)
Detector ID 17068
Drive direction 0
Local vehicle or non-local vehicle 1 (0: local car or 1: non-local car)

estimation. In addition, the one-second resolution is sufficient to uniquely identify most vehicles. Therefore, we divide a day into
several slots (windows) of identical duration t, and convert the passing time to slot/window ID accordingly. For instance, if t is set to
2h, the records generated from 00:00:01 to 02:00:00 and from 02:00:01 to 04:00:00 will be coded as “1” and “2”, respectively. We
experiment with five different temporal granularity values in this study, namely 30 min, 1h, 3h, 6 h, and 12h.

In the anonymized LPR data set, we denote R,-j as one spatiotemporal observation from vehicle V;. And all Rij ¢ =1,..,n;) over a
period of time T constitute the trajectory of V;, which is denoted by R;. A quasi-identifier QI} is generated by sampling I spatiotemporal
records (R;) without replacement from its trajectory set R;. In the following, we study the impact of different factors such as temporal
resolution t, size of vehicle set N, and the total time span of data T on individuals’ anonymity in Section 6.

5. k-anonymity and adversary model

We adopt the concept of k-anonymity to quantify the degree of uniqueness of each individual in the LPR data set. As mentioned,
an anonymized data set with k-anonymity means each individual is indistinguishable from at least k — 1 others. Specifically, the
anonymity set of V, given quasi-identifier QI is defined as the set of vehicles (including V;) whose trajectory sets include QI'. Thus, k-
anonymity guarantees the size of anonymity set of each individual is not less than k. The larger the individual’s anonymity is, the
lower the privacy disclosure risk becomes. A smaller individual’s anonymity means a larger privacy disclosure risk of her. However,
an individual’s anonymity equals to 1, in other words, one’s anonymity set only contains herself, isn’t equivalent to the leakage of her
privacy. An adversary use information/knowledge from an external source and link to the released anonymized data set to identify
the identity and sensitive information of an individual.

For each vehicle, the quasi-identifier is created by randomly drawing (without replacement) [ spatiotemporal tuples R/ from its
trajectory set, and we denote by A; (QIil) the set of all vehicles V,, (including V;) with QI LC R, (ie., QIi’ is also observed in the trajectory
of vehicle V;,). With this, the anonymity value of vehicle V; is defined as K; = |4;l. By definition, we have K; > 1, since at least QI will
be observed in its own trajectory. We focus on the scenario that government department publishes or shares LPR data set to third
parties (e.g., research institutions and technology enterprises) in this study. It is common that they possess a variety of databases and
mature technologies (e.g., triangulation) for acquiring information or background knowledge of individuals. For an global anon-
ymization of LPR data set to provide complete privacy protection, we assume that an adversary probably has the knowledge of any
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Fig. 2. Schematic illustration of k-anonymity.

spatiotemporal information of every vehicle in the LPR data set. The objective of an adversary is to infer the identity of an individual
to learn sensitive information of her. Therefore, any spatiotemporal record in the LPR dataset is a potential threat to the privacy of
individuals if they are utilized to identify the identity of individuals. It should be noted that the spatiotemporal records selected as
quasi-identifier themselves probably not carry sensitive information. For example, suppose a vehicle has been identified by several
spatiotemporal records and Jim is recognized as the owner. The adversary can track the history trajectory of Jim and obtain multiple
sensitive information of him. For example, one can count the visit frequency of locations of Jim. Then the top two visited locations are
highly likely to be his home and work locations (Zang and Bolot, 2011).

Fig. 2 gives a simple example of a road network in a regular square grid, where the serial numbers represent the locations of
camera gantries, and the arrow lines represent trajectories of different vehicles. Three vehicles A, B, and C with the same speed
departure their respective starting points at timestamp O and arrive at their destinations at timestamp 5. Table 3 lists the spatio-
temporal points of A, B, and C, respectively. If we select the spatiotemporal tuple QI = {(®, 0)} (the first element in a tuple represents
the location of detector and the second denotes timestamp) as the quasi-identifier of vehicle A, then the anonymity of A is 1 because
only A passed through location @ at time 0. In this case, when an adversary happened to across intersection ® and observed vehicle A
(saw the license plate number of A) at time O, then the identity (license plate number) of A was uniquely identified. If a set of three
spatiotemporal tuples QI = {(®, 3), (@, 4), (®, 5)} is selected, the anonymity of car A becomes 2 because both A and B went through
location @, @, and ® in sequence at time 3, 4 and 5. Similarly, the anonymity of A becomes 3 if the spatiotemporal point QI = {(®, 3)}
is selected as its quasi-identifier, because all of A, B, and C simultaneously passed ® at time 3. In the situation of individual’s
anonymity larger than 1, the adversary cannot uniquely identify the identities of the vehicles although he had the observation of
partial trajectory of them. Consequently, we can find that the concept of anonymity is an intuitive indicator for quantitatively
measuring the degree of privacy disclosure risk in individual-based mobility trace data set.

6. Factors affecting anonymity

In this section, we quantify the disclosure risk in the LPR data set by computing anonymity measures and investigate different
factors that affect the size of anonymity set. We conduct three experiments here on the LPR data. First, we quantify how anonymity
measures interact with the temporal granularity and the size of the published data set. Next, we measure whether there is a significant
difference in the anonymity of local and non-local vehicles. Finally, we test whether the results are consistent if we use temporally
continuous records to create quasi-identifiers for each individual.

6.1. Temporal granularity

Different from Zang and Bolot (2011) that creates quasi-identifier using the most preferential locations, we randomly select [

Table 3
Spatiotemporal points of vehicles.
Vehicle ID Timestamp
0 1 2 3 4 5
A O] ©] - @ @
B 0] ® - @ @
C ® - @ @ - ®
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Fig. 3. Size of anonymity set when 1, 2, 3 and 4 (I) records are selected at different temporal granularity levels.

spatiotemporal records without replacement from individual trajectory to build QI (see Algorithm 1). Although we have 14 million
vehicles in the LPR data set, computing anonymity on all of them will be infeasible given the O(n?) complexity. For this experiment,
we create an experimental data set by randomly selecting 100,000 vehicles from the whole LPR data, which is denoted by TRy-100k-

We examine the size of anonymity set identified by different numbers of spatiotemporal records at different levels of temporal
granularity. In doing so, we sort individuals based on increasing anonymity and plot the cumulative curve of individual anonymity
over different temporal granularity in Fig. 3. As can be seen, the larger the temporal granularity t is, the larger the average anonymity
set will be. This is because a large t value leads to more vehicles passing during the time interval, and thus the individual anonymity
increase.

Algorithm 1. Computing anonymity

Inputs:
TR
Outputs:
Ki, A, i=1,2, ..,N
Initialize:
Ai—@,i=12, .,N
fori=1to N do
QI}« randomly sample I records from R;
for j=1to Ndo
if QI C TR; then
Ai <AV
end if
end for
K; < 1Al
end for

We also find that the individual anonymity decreases substantially with the increasing of the number of spatiotemporal records
selected to identify individual’s anonymity. We calculate the proportion of uniquely identified individuals whose anonymity set only
contains itself at different temporal granularity level. Fig. 4 plots a histogram of the proportions of individuals uniquely identified by
2, 3, 4 or 5 spatiotemporal records, respectively. Error bars denote the 99% confidence interval on the mean. The result corresponds
to our intuition that a larger set of quasi-identifier leads to higher privacy risk (a lower K;). Surprisingly, even when we set the
temporal granularity to half a day (12 h), there are still about 90% of individuals can be uniquely identified by only 5 spatiotemporal
records in the LPR data set. This result is in line with previous studies based on call detailed records and credit card transactions (de
Montjoye et al., 2013, 2015). The LPR data further confirms that the individual mobility traces are highly unique, which enables the
re-identification of individuals without using external information. In other words, there is substantial privacy disclosure risk in
releasing mobility trace data sets.
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Fig. 4. Percentage of uniquely identified vehicles at different temporal granularity level.

In practice, agencies often only provide a small set of samples, such as PUMS (public use micro samples) in census. We next
investigate the impact of the size of released data set on individual anonymity. We examine two factors affecting the size of data set:
(1) number of released vehicles, and (2) length of covered time period.

6.2. Number of released vehicles

To examine how the number of released vehicles interacts with anonymity values, we focus on the case of [ = 1 (only one
spatiotemporal record selected as QI) and the temporal granularity t = 3 h. We randomly select two subsets of 50,000 vehicles and
10,000 vehicles from TRy—100x, and denote them by TRy-sox and TRy—10k, respectively. We calculate the anonymity of vehicles in the
three experimental data sets according to Algorithm 1. Fig. 5 shows the distribution of individual anonymity in the corresponding
data set. In order to more intuitively reveal the relationship of individual anonymity in data sets with different number of released
vehicles, we expand the anonymity of each individual in the data set with 10,000 vehicles by 5 and 10 times and the data set with
50,000 vehicles by 2 times, respectively, and denote them by TRy—10xs, TRiokx10 and TRy=sokx2. As a comparison, we also plot the
distribution of the expanded anonymity in Fig. 5. We see that the size of anonymity set increases with the number of vehicles in the
released data set and the anonymity distribution of TRy—10kxs, TRn=10kx10 and TRy=sorx> are almost identical to the anonymity dis-
tribution of TRy=sox and TRy=100k, respectively. This analysis shows that the individual anonymity is basically in proportion to the
number of vehicles in the released data set.

6.3. Length of released time period

To study the anonymity of individuals in published datasets over different released time length, we focus on the case with
temporal granularity ¢t = 3 h. To ensure the consistency of vehicle set in the published data sets over different released time length, we
select the trajectories of individuals with more than 1000 monthly records from original data set to create a new data set of 12,431
vehicles. Then we use the records from the first two weeks and the records from all the four weeks as two experimental data sets and
denote them as TRy—,,x and TRr—4,x. Again, we calculate the anonymity of individuals in these two experimental data sets based on
Algorithm 1. Fig. 6 shows the distributions of individual anonymity identified by 1, 2, and 3 spatiotemporal records in the experi-
mental data sets. The box plot highlights that individual anonymity distributions on published data sets over for different released
time spans are almost the identical, which suggests that individual anonymity is essentially invariant to the length of released time
period.

To explain the high similarity of individual anonymity over for different time spans (two weeks and four weeks), we examine the
probability that a vehicle passes through different locations over different time periods of a day in two days and calculate the cosine
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Fig. 5. Anonymity distribution in published datasets with different number of vehicles.
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Fig. 6. Anonymity distribution of published datasets over different period of time.

similarity of the distribution of the two days. The length of the vector is the number of time intervals (depending on the time interval
t) and each element in the vector corresponds to the fraction of vehicles passing through a particular location/detector at each time
interval of a day. Fig. 7 shows the cumulative distribution function (cdf) of the cosine similarity between March 15 and March 16, and
between March 15 and March 22, respectively. We find that the cosine similarity between March 15 and March 22 is slightly smaller
than between March 15 and March 16. However, we also notice that over 90% and over 95% of the locations have cosine similarity
greater than 0.8 which means that the traffic volume patterns of most locations have strong periodicity and the travel routes of most
individuals are very similar from day to day (see Cao et al., 2007). Overall, the results suggest that the high similarity of day-to-day
travel behaviors of individuals is the factor that leads to the identical anonymity distributions in published data sets covering
different time length.

6.4. Difference between local and non-local vehicles

We also investigate the anonymity difference between local vehicles and non-local vehicles. According to the license plate
number, there are 48,489 local vehicles and 51,511 non-local vehicles in TRy-1oox. We count the mean anonymity of local vehicles
and non-local vehicles according to the calculated anonymity results of TRy_100x in the previous section and calculate the difference
between mean anonymity of local vehicles and non-local vehicles. Fig. 8 shows the difference of the mean anonymity of local vehicles
and non-local vehicles identified by 1, 2, 3 and 4 spatiotemporal records. Error bars denote the 95% confidence interval on the mean.
We find that the anonymity of local vehicles are greater than the anonymity of non-local vehicles when only one spatiotemporal
record is selected to identify the anonymity set. When multiple spatiotemporal records are selected, the result is the opposite.

The anonymity identified by only one spatiotemporal record is actually the number of vehicles passing a specific location over a
specific period of time. Obviously, the smaller the traffic volume of the location over the time period is, the smaller anonymity set
identified by the single record is. The non-local vehicles enter and leave Guangzhou driving along the inter-city highway built in the
suburbs and the local vehicles are mainly driven along urban roads in urban areas. The traffic volumes of inter-city highways are
generally smaller than the road traffic volumes in urban areas of Guangzhou. So the anonymity values of local vehicles are greater
than the anonymity of non-local vehicles when only one record is used. However, when it comes to the situation with multiple
spatiotemporal records, the anonymity set is actually the intersection of several anonymity sets identified by several single records.
The locations of camera gantries in these inter-city highways coexist in the trajectories of non-local vehicles entering or leaving
Guangzhou. When multiple spatiotemporal records are selected to identify the anonymity set, the common trajectories in inter-city
highways of non-local vehicles entering/leaving Guangzhou increase the anonymity of those vehicles.
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Fig. 7. Cosine similarity between two different days.
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6.5. Quasi-identifier using continuous records

To investigate the anonymity identified by temporal continuous records, we randomly selected several temporal continuous
records from individual trajectory to identify its anonymity set (see Algorithm 2). We focus on the case with temporal granularity
t = 6h and calculate the individual anonymity of TRy-100x identified by 1, 2, 3 and 4 records according to Algorithm 1 and Algorithm
2, respectively. Fig. 9 shows the anonymity results.

As shown in Fig. 9, there is almost no difference between the individual anonymity calculated by Algorithm 1 and Algorithm 2
when only one spatiotemporal record is selected, which is expected. When multiple records are selected, the individual anonymity
calculated by Algorithm 2 becomes much larger than the anonymity calculated by Algorithm 1, indicating that individuals are more
likely to be uniquely identified by several discontinuous spatiotemporal points of trajectory. This is consistent with our intuition. It is
common for different individuals to have a common continuous trajectory: for example when vehicles traveling in a group, they will
more likely to be in the anonymity set of each other’s.

Algorithm 2. Computing anonymity with continuous quasi-identifiers

Inputs:
TR
Outputs:
Ki, A, i=1,2, ..,N
Initialize:
A <@ i=12 .,N
fori=1to N do
QI}«— randomly sample temporal continuous [ R,-j from R;
for j =1 to N do
if QI! C TR; then
Ai < AUV
end if
end for
K; < 1Al
end for
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Fig. 9. Anonymity results identified by Algorithm 1 and Algorithm 2.
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7. Two possible solutions

In this section, inspired by the empirical results in Section 6, we propose possible solutions from perspectives of both suppression
and generalization to achieve k-anonymity privacy protection of LPR data set. More specifically, we remove sensitive records in the
suppression solution and pay close attention to the loss of data caused by it. As for the generalization solution, we propose an
adaptive time interval cloaking algorithm that adaptively adjust the temporal resolution of location information based on traffic
counts and the principle of minimal information loss.

7.1. Suppression solution

As can be seen from Algorithm 1 and Algorithm 2, the anonymity identified by only one spatiotemporal record is actually the
number of vehicles passing a specific location over a specific period of time and the anonymity set identified by multiple spatio-
temporal records is actually the intersection of several anonymity sets identified by several single records. Obviously, the smaller the
traffic volume of the location over the time period is, the smaller anonymity set identified by the single record is. The anonymity
identified by a quasi-identifier depends on the anonymity sets identified by several single records in the quasi-identifier.

Based on the observations above, we propose a suppression solution for privacy protection of LPR data publishing. Suppression
refers to remove extreme cases from original data set, which is the most direct way to achieve k-anonymity protection. When it is
applied to our LPR data set, we define sensitive records as the record whose anonymity set is smaller than € and denote it as SR;. In
other words, a sensitive record means the traffic count of a specific location over a specific period of time is less than ¢. It is obvious
that the presence of extreme sensitive records in individual’s trajectory brings down the overall anonymity of individuals. Therefore,
we remove sensitive records from individual’s trajectory and investigate the effects on privacy protection and data of it. It should be
noted that the suppression solution here is a kind of global suppression (comparing to the local suppression proposed by Chen et al.
(2013)) since we remove sensitive records from the whole LPR data set. Actually, the suppression solution here is a special case of the
anonymization method in (Chen et al., 2013). The sensitive record is essentially a MVS (Minimal violating sequence) with a sequence
length of 1. Since we aim at achieving k-anonymity privacy guarantee when a single spatiotemporal record is selected to identify
individual’s anonymity, the global suppression is necessary for the global anonymization of trajectory of each individual. To quantify
the impact of the suppression solution on privacy-preserving and usefulness of data, we define anonymity gain ratio as the ratio of
mean anonymity gain to the mean anonymity of initial data set (¢ = 0) after removing of sensitive records and denote it as AGR.. We
define data loss ratio as the ratio of the number of removed data records to the total number of records in initial data set and denote it
as DLR.. We remove SR, from our experimental data set TRy-1ox and explore the impact on AGR, and DLR, over different €. We focus
on the case with temporal granularity ¢ = 6k and the individual anonymity is identified by 1, 2, and 3 spatiotemporal records
according to Algorithm 1. Fig. 10 shows AGR, (left y-axis scale) and DLR, (right y-axis scale) after removing SR, over different «.
Error bars demote the 95% confidence interval on the mean. We find that individual anonymity has a significant improvement after
removing sensitive records. The average individual anonymity identified by three spatiotemporal records increases by more than 20%
at the cost of less than 8% loss of data. We also notice that both AGR, and DLR; increase with €, which demonstrate the proposed
suppression solution is virtually a game between privacy preserving and utility of data.

Except for the overall improvement of individual anonymity, we also concern about the impact of the proposed suppression
solution on minimum individual anonymity in data set. Fig. 11 plots the minimum individual anonymity identified by 1, 2, and 3
spatiotemporal records after removing SR, over different ¢. Error bars denote the 95% confidence interval on the mean. Comparing to
the case of ¢ = 0 (unprocessed data set), we find that the minimum anonymity identified by one or two spatiotemporal records has a
distinct increasement after removing sensitive records, which indicate our solution has a good performance on reducing the risk of
being re-identified. Just as we expected, e-anonymity of released data set is achieved when only one spatiotemporal record is selected
to identify the anonymity set. However there is only a slight improvement on the minimum individual anonymity identified by three
spatiotemporal records, illustrating the strong uniqueness of individual mobility traces.
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Fig. 10. AGR; and DLR; after removing SR over different ¢.
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7.2. Generalization solution

Generalization is an another common technique to achieve k-anonymization. We coarsen the location information in time domain
by dividing a day into several time slots with identical time interval t to realize the generalization of location data in the previous
section and the results presented above have shown that the individual anonymity increase with the temporal granularity, which
inspires us to publish mobility trace data without compromising privacy by enlarging temporal granularity. However, the coarser the
temporal resolution is, the more information the data losses. Taking into account the balance between the degree of privacy pro-
tection and the utility/usefulness of the data, we propose an temporal generalization solution to achieve k-anonymity privacy pro-
tection of released data set under the principle of minimum information loss.

Inspired by the adaptive quadtree-based spatial cloaking algorithm proposed by Gruteser and Grunwald (2003), we propose an
adaptive temporal cloaking algorithm to meet specified anonymity constraints. While Gruteser and Grunwald (2003) used quadtree
partitioning, our algorithm is based on the binary tree structure which is more flexible and suitable for temporal cloaking. The key
idea underlying our algorithm is that a given specified anonymity constraint k;, can be maintained in any period of time in a day by
decreasing the temporal resolution of released data records. To this end, given an anonymity constraint k.,;,, for a specific location of
detector, our algorithm subdivide the period of time until the traffic count during this period of time falls bellow the constraint k.
In addition, our algorithm is committed to achieving k-anonymity protection of released data set while maintaining utility/usefulness
of data, which is proved to be a NP-hard problem (Gionis and Tassa, 2008). For this purpose, the algorithm select splitting points
recursively based on the principle of minimal information loss to find the approximate solution to this problem.

We propose an entropy measure of information loss caused by temporal cloaking. Let D be the collection of data records generated
from a specific location within a specific day. As can be seen from Table 2, the original resolution of data records is one second. To
enhance the algorithmic efficiency and decrease the calculating time, as we do in previous section, we divide a day into several time
slots 63, &5, ...,0, with identical time interval t,; (given in minutes, e.g. 5min, 10 min) and the splitting points are constrained to
choose from the beginnings or endings of these time slots, namely, the subscript set {1, 2, ...,n + 1}. We count the number of data
records within these time slots, namely, the traffic counts of 6;, &5, ...,0, and denote them as q;, g,, ...,q,. To meet the given anonymity
constraint kn;,, our algorithm aggregate &y, 6,, ...,6, to several coarser period of time &), &.. ...,5,, segmented by splitting points
Topt = {T, B -, Tms1). It is obvious that TG, is a subset of {1, 2, ..,n + 1}. Similarly, we count the number of data records within
different time periods &, §,. ....0,, and denote them as G, Gy -4, Define two discrete random variables 6 € {§;, 6, ...,6,} and
§ € {6y, 8. ....5,,} to capture these two random events: a data record is generated in the initial time slot §, and the aggregated time
period 8, respectively. Then the information loss of data set D due to the temporal generalization scheme L, can be defined as the
empirical conditional entropy as the following Eq. (1). The temporal generalization algorithm that achieves k-anonymity protection
of released data set with minimal information loss is described in more detail in Algorithm 3. After getting the temporal splitting
scheme of a location, we can convert passing time of records generated from this location to ID of time period accordingly.

s < g; ! g g
(D, L) = H@8) = - Y, == 3 Zlog~
i=1 DI j=ti 4q; q; (€Y

To verify the performance of our algorithm, we divide TRy-100x into several subdataset according to different dates and locations and
implement the temporal generalization algorithm on them. We set the initial temporal resolution f,; to 5min and implement our
algorithm to get several anonymized data sets under different anonymity constraint k;,. We calculate the individual anonymity
identified by 1, 2, 3, and 4 data records of these anonymized data sets according to Algorithm 1. Fig. 12 presents an overview of our
results. It illustrates the tradeoff between the overall anonymity and temporal resolution, showing mean anonymity of all individuals
(left y-axis scale) and median resolution of all generalized data records (right y-axis scale) over different anonymity constraint k.
As we can see from Fig. 12, the bigger the anonymity constraint ky, is required, the bigger the mean individual anonymity of
anonymized data set is, and the coarser the temporal information of data records is. This indicates the privacy-and-utility trade-off of
the our temporal generalization algorithm.
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Algorithm 3. Adaptive time interval cloaking algorithm

Inputs:
D, tinits Kmin» G1» Qo s> 1 = 1440/ tinit
Outputs:
Topt
Initialize:
Topt < ]
I<[1,n+1]
while Iy # T do
Topt < T
m = T
fori=1tom —1do
—
j=

Tli+1]-1
Jj=t

if Tieft < Tright then

Tlefe < minT s.t. ) lpm g > kimin, T € {Tfig, Iiip + 1, . Tig11}

Tright < MAaxT S.t. 3, g > kmin, T € {Tjg, Ty + 1, - Tiv1y}
D'«<Data records generated between Ij;; and Ijj41)
Topt < argmin II(D’, 7)
Add topt to T
T'< sorted(I")

end if
end for
end for

To highlight the superiority of our algorithm to the uniform time interval cloaking method, we focus on the case of I = 1 (one
spatiotemporal record selected). Fig. 13 plots the anonymity distribution of the anonymized data set with a uniform temporal
granularity t = 3h and the anonymity distribution of the data set with a median temporal resolution t,e4ian = 3k which is anonymized
by Algorithm 3 under the anonymity constraint k.,;, = 100. We find that although these two data set anonymized by different
temporal generalization methods have similar temporal granularity level, there are conspicuous differences of the anonymity dis-
tribution of them. Although the mean anonymity of the data set anonymized by uniform time interval cloaking method (the green
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Fig. 13. Anonymity distribution of uniform time interval cloaking method and Algorithm 3.
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Table 4

Traffic volume for different road types.
Road type Traffic volume
Highway 21029
Expressway 33763
Arterial 20329
Sub-Artetial 18997
Collector 6371

vertical dashed line) is larger than the mean anonymity of the data set anonymized by our algorithm (the red vertical dashed line),
the individual anonymity generated by our algorithm has a more concentrated distribution than the anonymity result generated by
uniform time interval cloaking method. A majority of individuals in the anonymized data set generated by our algorithm have an
individual anonymity larger than 100 (except the case that the daily traffic volume is less than 100) which is a direct response to the
minimum anonymity constraint kuyi, = 100. At the same time, almost all of individuals have an individual anonymity less than 200
which is the result of pursuing the accurate temporal information of data as much as possible under the minimum anonymity
constraint.

Our algorithm adaptively generalize the temporal information of data records according to the traffic volume because it changes
heavily between peak and night time off-peak hours. But at the same time, the traffic flow also shows a large imbalance in spatial
domain. We classify all detectors into five categories according to the type of road in which they are located. There are five types of
roads in the road network of Guangzhou, namely, highway, expressway, arterial, sub-arterial, and collector (see Fig. 1). We average
the traffic counts for different road types and show them in Table 4. The traffic volume is calculated as the average 24 h unidirectional
traffic counts. Based on the observation above, we investigate the dependency of generalization results of our algorithm on the spatial
imbalance of traffic flow. Fig. 14 illustrates the dependency of resulting temporal resolution and information loss under the anon-
ymity constraint k,;, = 100 on road characteristics and traffic volumes. For each evaluation road type, the figure shows the median
resolution (left y-axis scale) and the mean information loss (right y-axis scale) of daily data set generated from all detectors located in
the same type of road. We find that the median temporal granularity and the information loss decrease as traffic volume. Under the
uniform anonymity constraint, for the expressways with the highest density of vehicles, the temporal accuracy is the 204 min. For the
collectors with the lowest traffic volume the resolution decreases to 675 min.

8. Conclusion and discussion

In this paper, we quantitatively measure the privacy disclosure risk in an LPR data set based on the concept of k-anonymity. Our
study shows that individuals in anonymized LPR data set still have a very high risk of being re-identified. Five spatiotemporal records
are enough to uniquely identify about 90% of individuals even the temporal granularity is set to be half of one day. This result shows
that replacing license plate number with random identifiers is far from enough to protect privacy, and our study serves as a reminder
to relevant agencies and data owners to pay special attention when releasing mobility trace data sets. Moreover, we investigate the
effect of multiple factors affecting individual anonymity, including the temporal granularity, the size of the published data, the
anonymity differences between local and non-local cars, and the anonymity identified by continuous and non-continuous records.
The results provide technical guidance for agencies to publish and share LPR data set.

To publish LPR data without compromising privacy and to maintain the utility of the data, we propose both a suppression solution
and a generalization solution in this paper. The suppression solution removes sensitive records from the data set. The results on the
trade-off between privacy and utility show that the average individual anonymity with I = 3 could increase by more than 20% at the
cost of less than 8% loss of data, which suggests the suppression solution has a notable performance on privacy protection without
sacrificing much utility. The generalization solution is driven by a bintree-based adaptive time interval cloaking algorithm. The

12— T T T — 5.0
& Mean Information loss 8
1MF . .
o Median resolution —
2]
_10f < z
5 =
s o 145 8
5 © <
5 8ro S
2 ®
9 7 - g
3 S
3 6F o 14.0 E
= ©
5F o o
o < =
4 -
o

:?-Hg hway  Expressway  Arterial Sub-Arterial Collectocrs'5
Road type

Fig. 14. Dependency of temporal resolution and information loss on road type.
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bintree-based temporal generalization algorithm is introduced to achieve k-anonymity privacy protection of released data set with
minimal loss of information. Our results show that the bintree algorithm is extremely well-designed to satisfy user-specified minimal
anonymity constraint and is more flexible and reliable compared to the uniform time interval cloaking method. Furthermore, we
show that the temporal accuracy of data depends on traffic condition. For the expressways with the heaviest traffic flow, the median
accuracy is 204 min and the value increases to 675 min for collectors with the lowest traffic volume under the uniform anonymity
constraint ki, = 100.

Overall, this paper reveals the high risk of privacy disclosure of LPR data from a quantitative point of view. We introduce possible
solutions to provide privacy protection for agencies publishing/sharing mobility trace data and discuss the privacy-and-utility trade-
off when releasing such data sets. The results show that our solutions have good performance to improve individual anonymity. In
particular, both of proposed solutions can achieve k-anonymity privacy protection of released data set when [ =1 (one spatio-
temporal point as quasi-identifier). But as the size of quasi-identifier increases, the privacy-preserving effect of them gets smaller and
smaller, which indicates the strong uniqueness of individual mobility traces. On the other hand, it also shows the drawback of the k-
anonymity that failing to provide strong privacy guarantee when the adversary possess a large volume of external/background
information (e.g., individual’s multiple spatiotemporal information in this work). Privacy disclosure risk occurs when the real spa-
tiotemporal information of an individual’s mobility traces can be linked to his/her external information. To protect people from
linkage attacks and to provide stronger privacy protection, our future work will focus on trajectory synthesis, which generates
synthetic trajectories of an individual based on his/her historical mobility trace data using statistical learning models (e.g. He et al.,
2015; Sun and Axhausen, 2016; Yin et al., 2018). A good synthesis model is expected to capture the underlying structure and
statistical properties of the real data as much as possible. With these solutions, one can reproduce real-world transportation features
(e.g., demand, speed, and congestion pattern) without compromising one’s privacy. Another future research direction is to identify
the best data publishing solutions for different data application scenarios/requirements. Although in this paper we introduce the data
loss ratio and information loss to quantify the overall loss of data usefulness/utility, different real-world engineering applications may
have different objectives in practice. We hope this work could stimulate more discussion to address the privacy issues in individual-
based mobility trace data set.
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