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a b s t r a c t

This study optimizes the fleet size and schedules of feeder buses that connect metro and residential areas
in the context of bike-sharing systems. We propose hybrid operation modes that combine fixed and
dynamic frequencies in a bimodal period in comparison with the conventional bus scheduling with
constant service frequencies. The effect on endogenous demands from bike-sharing, which is another
option for commuters, is considered. This study proposes a multi-objective model under one hybrid
mode with morning fixed and evening demand-responsive (MFED) service to minimize the average
passenger waiting time and maximize the operator profits. The constraints include vehicle capacity and
passenger mode choices. Two algorithms are developed to solve the feeder bus planning problem of a
metro station and three nearby communities in Chengdu, China (i.e., non-dominated sorting genetic
algorithm-II [NSGA-II] and a customized multi-objective optimization algorithm based on Particle Swarm
Optimization [MPSO]). Numerical results show that the proposed MPSO algorithm slightly outperforms
NSGA-II in terms of solution quality and efficiency. We further compare two feeder transit operation
modes (i.e., morning demand-responsive and evening fixed [MDEF] service and all fixed service) and find
that the MFED outperforms MDEF and fixed operation mode in terms of system effectiveness. In addition,
we confirm that the effect of bike-sharing systems cannot be neglected because passengers may change
their travel mode while waiting for a feeder transit service. This study can provide useful policy impli-
cations and operational recommendations for government agencies and transit authorities to regulate
the bike-sharing market for effectively addressing the first-and-last-mile issue.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, bike-sharing has become increasingly popular in
many countries given its convenience and governmental advocacy.
However, bus ridership has been slightly affected by bike-sharing
because passengers opt to ride bicycles for commuting when
transit service is inaccessible for short-distance travels (Campbell
and Brakewood, 2017). The advent of bike-sharing systems holds
great potential in solving the first-and-last-mile problem (Shaheen
et al., 2010). However, this development triggers a series of new
cience and Engineering, Bei-
tructure System and Safety
safety issues, such as disorderly parking, particularly around the
metro and bus stations, thereby occupying bicycle and motor
vehicle lanes and partially or completely blocking sidewalks. Pre-
vious studies have confirmed that bike-sharing systems become
minimally attractive under adverse weather conditions (e.g., snow,
rain, and scorching heat) (Kim, 2018). The willingness of bike-
sharing usage is expected to decline because the distance from
residential areas to a metro station increases to a certain degree
(Campbell and Brakewood, 2017). Under the abovementioned cir-
cumstances, where bike-sharing systems are infeasible, the feeder
transit service remains advantageous because it provides easy ac-
cess to nearby metro stations.

Generally, the transit planning process is comprised of five
steps, namely, latent demand study, network and route design,
timetable development, vehicle scheduling, and crew scheduling
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(Ceder and Wilson, 1986; Ceder et al., 2001; Yim and Ceder, 2006).
The first one among these steps is the premise and foundation of
the remaining ones which in turn affect passengers’ travel choice
behavior. For example, unreasonable timetable designmay result in
long waiting time, thus forcing people to select other travel modes,
such as shared bikes or taxis.

The target potential users in the present study are mainly
commuters. Thus, the feeder bus will operate for morning and
evening periods. Then, the operators must decide on the required
number of vehicles. Evidently, the fleet size is closely related to
vehicle schedules and timetable. Several studies have focused on
scheduling problem under the condition of a given fleet size (e.g.,
De Palma and Lindsey, 2001; Wang, 2017); in this case, the bus
departure time is typically the decision variable, and the departure
interval is flexible. By contrast, other studies have concentrated on
the joint optimization of fleet size and bus schedules. This type of
research is classified into two categories, that is, the frequency is
fixed and dynamic. In former studies, the frequency was indirectly
formulated by fleet size, so that there was only one independent
variable rather than two (e.g., Wirasinghe, 1980; Kuah and Perl,
1989; Shrivastava and O'Mahony, 2006,2009; Furth and Wilson,
1981; Verbas and Mahmassani, 2015); in latter studies, the fre-
quency was viewed dynamic as dial-a-ride (e.g., Cordeau and
Laporte, 2007; Lu et al., 2016) and first or last-mile (e.g., Wang
and Odoni, 2014; Shen et al., 2018) problems, which belong to
demand-responsive transit (DRT).

However, few studies on the feeder transit service have
addressed the joint optimization of fleet size and bus schedules that
integrate morning and evening periods. A cohesive solution for the
entire transit planning problem is difficult to achieve by sequential
approaches to each sub-problem (Ibarra-Rojas et al., 2015). For
example, the morning and evening travel demands have five and
seven optimal fleets, respectively. If the entire travel demand over
the two periods is considered, then the optimal fleet is six. Thus, we
must concurrently consider the fleet size of the feeder transit ser-
vice during hybrid service periods and operation modes. Most
feeder transit systems use two typical operation modes, namely,
fixed and demand-response schedules (Li and Quadrifoglio, 2010).
The traditional feeder transit system with a fixed schedule is
increasingly cost efficient given the predetermined schedule.
However, this system lacks flexibility in satisfying individual pas-
sengers' travel requirements. By contrast, the demand-responsive
feeder transit system can provide door-to-door service with a dy-
namic schedule from a metro station to an individual's home at the
cost of considerable operational resources. Existing studies have
determined that the demand-responsive feeder transit system is
more favorable than the fixed feeder system during the evening,
night, or early morning hours when demand is low (Daganzo,1984;
Koffman, 2004). Li and Quadrifoglio (2010) quantitatively verified
that the demand-responsive feeder transit service must be imple-
mented during peak hours when the demand falls between 10 and
50 passengers/mile2/h. However, the study of these authors was
based on simulation and assumption that passenger demand fol-
lows Poisson distribution with no passenger leaving due to exces-
sive waiting time. Under the advent of bike-sharing systems
(especially dockless shared bikes), passengers can take bicycles
from their home places to the metro station. Therefore, the loss of
passenger demand caused by bike-sharing must be considered to
decide on whether fixed or demand-responsive feeder transit ser-
vice mode must be implemented.

The present study optimizes the fleet size and scheduling for
feeder buses in bimodal periods to address the aforementioned
issues considering the effect of bike-sharing systems on endoge-
nous demand. The research objective of this study is to explore the
optimal operational strategy in a multi-modal transit network for
transit authorities, including how many bus fleets need to be pur-
chased in advance and how to dispatch the vehicles efficiently. A
hybrid operating mode that combines fixed frequency and dynamic
schedules, rather than the conventional morning fixed and evening
fixed service (MFEF), during the bimodal periods is adopted. A
multi-objective model is developed to acquire coordinative opti-
mization between operator and passenger waiting costs. This will
help transit authorities make insightful decisions considering both
operating cost and service quality comprehensively, and avoid re-
sources to be wasted for efficient feeder bus service. We formulate
the problems in the morning and evening and connect them with
the same fleet size. Different from single-objective optimization
problem (e.g., Wang et al., 2017a,b; Changxi et al., 2018a,b), multi-
objective optimization problem is more complicated in algorithm
design. A customized Particle Swarm Optimization (PSO) algorithm
is then designed to obtain Pareto solutions for solving the problem.
Moreover, we compare with non-dominated sorting genetic
algorithm-II (NSGA-II), which is proposed by Deb, Pratap, Agarwal,
&Meyarivan in 2000 and has been extensively used to solve multi-
objective problems (Wang and Liu, 2015, Rabbani et al., 2017;
Rashidnejad et al., 2018; Yong et al., 2018).

The primary contributions of this study are presented as fol-
lows: (1) The fleet size is considered a decision variable under a
hybrid operation mode with a dynamic schedule. An improved
multi-objective optimization algorithm based on PSO (MPSO) al-
gorithm is designed to solve this complex multi-objective problem
for balancing operation costs and service quality. (2) The effect of
bike-sharing systems on consumers’ travel choice is incorporated in
the proposed model, which indirectly affects the endogenous
passenger demand and feeder bus scheduling. (3) The morning and
evening period service modes are simultaneously studied to decide
on the optimal fleet and schedules for transit operators. We
perform an in-depth comparable framework to examine the service
modes between fixed and demand-responsive feeder transit ser-
vices on the basis of empirical data in Chengdu, China.

The remainder of this paper is organized as follows: Section 2
reviews the literature. Section 3 introduces the problem in detail
and states our assumptions. Section 4 formulates the multi-
objective model under a hybrid operation mode. Section 5 de-
scribes the MPSO algorithm for solving the problem. Section 6
demonstrates the algorithm comparison, sensitivity analysis, and
service mode comparison through numerical analysis. Section 7
presents the conclusions and future research area.

2. Literature review

The creation of timetables on fixed routes has a close relation to
the dispatching policy problem, which has been extensively stud-
ied in the literature. Newell (1971) and De Palma and Lindsey
(2001) investigated this problem in an idealized transit system.
Specifically, Newell (1971) assumed the passenger arrival rate as a
given smooth function of time and studied the dispatching
schedule for a transportation route in two situations, that is,
whether to consider vehicle capacity or not. This work aims to
minimize the total passenger waiting time. De Palma and Lindsey
(2001) analyzed the optimal timetable for a given number of ve-
hicles between two nodes on a single line considering riders’
preferred travel times that were assumed to be uniformly distrib-
uted in the population for minimizing the total cost of schedule
delay. These authors ignored vehicle capacity constraints. Adamski
(1998) developed a dynamic optimal dispatching control of vehi-
cles using a simulation model to increase the reliability of bus op-
erations in terms of on-time performance. Furth andWilson (1981)
developed a model to set frequencies by allocating available buses
to maximize the net social benefit subject to constraints in terms of
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total subsidy, fleet size, and levels of vehicle loading. Verbas and
Mahmassani (2013) extended the model presented by Furth and
Wilson (1981) by introducing two formulations. The first formu-
lation was to maximize the total wait time savings and number of
riders under the constraints of bus loading, policy headway, fleet,
and budget. The second formulation was to minimize the net cost
under the same constraints with the first formulation. Through a
numerical test, this work found that the increment of fleet size may
cause the reduction of operational cost.

Among the studies applied to real cases, Ceder (1986) provided
alternative methods for creating bus timetables using passenger
load data and produced a set of computer programs to decide on bus
departure times for the case of evenly and unevenly spaced head-
ways in which the average loads are uniform. Hadas and
Shnaiderman (2012) presented an approach for frequency setting
using statistical distributions of passenger demand and travel time
developed fromautomatic passenger counter and automatic vehicle
location data. Thiswork addressed theminimization of the total cost
incurred with frequency or vehicle capacity on the basis of empty
seats and unserved demand. Verbas andMahmassani (2015) used a
bi-level programming model to solve the frequency-setting prob-
lem and applied this model to numerous instances. However, the
total transit demand was assumed to be fixed in their work.
Martínez et al. (2014) considered the transit assignment decisions
and proposed a model to jointly decide on the demand and fre-
quency on each line. The proposed metaheuristic is applied to a
large-scale realistic network. Cort�es et al. (2011) developed amodel
by combining short turning and deadheading strategies for a single
line and found that the integrated strategy can be justified in cases
where unbalances are evident between and within areas. An
empirical study in Santiago was undertaken in their numerical
applications.

Although high-quality solutions can be obtained for each sub-
problem (e.g., timetabling and vehicle scheduling) of the transit
network planning, a cohesive solution for the entire transit plan-
ning problem is difficult to formulate through sequential ap-
proaches. Thus, recent studies have focused on integrating two or
more sub-problems of transit network planning. For example, Van
den Heuvel et al. (2008), Ceder (2011), Petersen et al. (2013), and
Ibarra-Rojas et al. (2014) investigated the integration of timetabling
and vehicle scheduling problems.

Research on feeder bus network scheduling problem or last-
mile problem also have been extensively investigated. Yim and
Ceder (2006) documented the survey results of Castro Valley on
the smart feeder/shuttle bus service and proposed 10 routing and
scheduling strategies. Most related papers have solved the feeder
bus scheduling problem considering the schedules of a trunk line or
node. For example, Sivakumaran et al. (2012) coordinated the
schedules of the feeder line with those of the trunk line in an
idealized system and concluded that user and operator costs
diminish when the frequencies of feeder and trunk lines are jointly
established. Xiong et al. (2015) optimized a synchronized timetable
for community shuttles connected to a metro considering vehicle
capacity and fleet size constraints. These authors proposed a heu-
ristic algorithm of shifting departure times to solve the model.
Wang (2017) presented a mixed-integer programming model to
determine the schedules for a multi-vehicle fleet for a last-mile
problem, thus minimizing passenger riding and waiting times.
Chandra et al. (2013) analyzed the accessibility effects to a major
transit line/transfer stop using two most common feeder transit
services, namely, fixed route transit and DRT. Li and Quadrifoglio
(2010) developed analytical and simulation models to help
decision-makers to select between a fixed-route and a demand-
responsive operating policy and when and whether to switch
from one to the other during the day. Pan et al. (2014) presented a
mixed integer linear programming model for a flexible feeder
transit system to design the routing plans and service area given
the fleet size. Ceder (2013) applied a designed simulation model to
investigate 10 routing strategies with all the different combinations
of fixed/flexible schedules, shortcut and/or short-turn concepts and
so on.

Most studies, such as Hsu et al. (2018), Zhang et al. (2015), Zhang
et al. (2019), and Haider et al. (2018), involving bike-sharing have
focused on bike-sharing itself, including the evaluation of its ser-
vice quality, characteristic analysis, electric fence planning, in-
ventory, and rebalancing. For example, Hsu et al. (2018) proposed a
model that considers information uncertainty and various criteria
for evaluating and improving the service quality of public bike-
sharing systems. Several remaining studies, such as Campbell and
Brakewood (2017), have addressed the interaction between bike-
sharing and public transit. However, these studies have only
analyzed the system effect on travel demand and have not further
considered bus planning under such influence.

In summary, most existing literature has focused on the joint
optimization of traditional bus schedule and fleet but has lacked
research on feeder bus joint optimization. In addition, morning and
evening peaks have not been considered jointly in existing litera-
ture, and studies on the manner by which service mode is deter-
mined by flexible or fixed mode have been rare. Therefore, the
methods for optimizing feeder bus scheduling in a competitiveway
on dynamic demandmust be further explored. In the present study,
we investigate the integration of feeder bus dynamic scheduling
and fleet management problem in contrast to a traditional fixed
frequency one on multiple lines. In addition, the effect of bike-
sharing systems, as a competitive way, is considered. This
endeavor is rarely referred to in previous literature.

3. Problem description

An area with a metro station in the center within a radius of
5 km is considered and depicted in Fig. 1. People living in this area
routinely travel between their home places and the metro station
for commuting. In general, we can set up the stops on one side of
feeder buses by mining bike-sharing trajectory and transit smart
data through several clustering methods (Bordagaray et al., 2016).
The stop on the other side is evidently the metro station. Here, the
routes are assumed to be predetermined. The problem is the
number of vehicles that are required for the operator and type of
vehicle scheduling considering the influence of bike-sharing
systems.

3.1. Consumer's choice behavior

Shared bikes and feeder buses are the two main choices for rail
transit riders to reach the metro service. A bike-sharing scheme is
cheap and exhibits high reliability. Thus, if a person knows his/her
cycling speed, then the time he/she takes to reach themetro station
is nearly certain. If taking feeder buses, then passengers must walk
to the bus stop first, then wait for a bus to arrive, and finally board
the bus. In this process, the waiting time generally depends on
passengers’ arrival time with the varying in-vehicle times caused
by traffic congestion. This condition indicates that the reliability is
worse in feeder buses than that in a shared bike. However, a bus
evidently runs faster under ideal situations and is also labor-saving
for long-distance travels, especially during the rainy and snowy
seasons.

Fundamentally, passengers will not take feeder buses if the trip
cost (which includes walking, waiting, and in-vehicle) is much
higher by bus than by shared bikes (cycling cost), except for special
groups, such as the elderly or disabled. Moreover, if the waiting



Fig. 1. Diagram of the feeder transit service problem.
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time exceeds the acceptable value, then passengers may tempo-
rarily reconsider taking a taxi or riding a bike. Thus, implementary
results may not be convincing without considering the effect of
bike-sharing on feeder buses. We consider the effects from two
points on the basis of these analyses. First, the trip time by feeder
buses cannot exceed that by shared bikes. Second, passengers can
switch to cycling or taxi while waiting for the feeder buses.
3.2. Hybrid operation modes

Generally, two combinations, namely, morning fixed and eve-
ning demand-responsive (MFED) service and morning demand-
responsive and evening fixed (MDEF) service, exist in each route.
The bus headway is equal within the fixed frequency mode, and the
average waiting time is half the headway (Newell, 1971). The
operator dispatches buses in accordancewith varying demands and
available vehicles within the dynamic scheduling mode. In this
mode, passengers must provide their information through a
smartphone app or internet website for helping the operator make
plans in advance. Specifically, if the demand-responsive transit
service is provided in the evening rush hour (in this case the feeder
busmainly serves the alighting commuters exiting from eachmetro
station for a short bridging trip), a commuter need to submit his/
her estimated arrival times at each metro station and the nearest
bus stop to his/her homeplace (we do not allow passengers to input
home addresses for privacy protection). For example, a passenger
boards a train at 5:00pm and requires 20min to arrive at his/her
destination metro station (i.e., the studied metro station), he/she
can submit the arrival time as 5:20pm and the bus stop that is most
adjacent to his/her homeplace.

The modeling methods of the two combinations are essentially
the same. Thus, we illustrate the MFED service in subsequent
chapters. The performance of each service mode is closely related
to the actual travel demand distribution. In the morning, passenger
departure times from homes depend on their expected working
times (mostly before 9 a.m. in China), and thus the morning pas-
senger demand is concentrated. In the evening, passengers egress
in batches from each metro station, thereby relying on the running
interval of each train. In contrast to morning commuting travels,
passengers do not have rigorous time windows to go home. Thus,
the evening demand is generally dispersed. This could be validated
by smart card transaction data collected from October 1, 2018 to
October 31, 2018. We aggregated the total number of boarding trips
by each minute in Fig. 2, and found that the boarding time were
normally distributed in the morning rush hour, where the peak can
be observed at 7:50 on weekdays. In the evening rush hour, there
were several peaks in the boarding time. The three peaks appeared
at 17:15,17:45 and 18:15, respectively, which lag 15min behand the
typical off-duty times (17:00, 17:30 and 18:00). We initially adopt
the conclusion of Li and Quadrifoglio (2010) on the basis of these
characteristics and assume fixed and dynamic schedules in the
morning and evening, correspondingly. The reverse service mode
will be discussed in Section 6.

Notably, feeder buses also carry passengers on the return
journey, but as previously mentioned, the main passengers for
feeder buses are commuters. Thus, we neglect passengers on return
journeys in the model because the number of returning passengers
during peak hours is relatively small.
3.3. Operators’ strategy

An operator must rationally determine the fleet size on the basis
of the known demand. The assumption is that the morning period
is [ts; te], and the evening period is [Ts; Te]. Here, the number of
running vehicles in the morning is the same as that in the evening.
The vehicle capacity is uniform and denoted by c. The bus price is p



Fig. 2. Distribution of boarding time for Beijing public transport.
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($) per passenger. Then, the operator's profit is the fare revenue.
Furthermore, the expenditures are the vehicle purchase and oper-
ation expenses, which are proportional to fleet size and vehicle
capacity. Jansson (1980, 1984) emphasized that the purchase cost
and use of each vehicle demonstrate a linear dependency on bus
capacity. In the present study, we denote the corresponding exog-
enous unit cost by CB and CK . Then, the expenditure can be
computed as fleet size times each vehicle cost.

The following main assumptions are presented in this study:

(1) Feeder bus stops and routes are pre-specified.
(2) The number of running vehicles in the morning is the same

as that in the evening (denoted bym). The vehicle capacity is
c. The morning period is [ts;te], and the evening period is [Ts;
Te].

(3) Passengers must submit to the bus operator the information
on their arrival time and destinations in advance.

4. Multi-objective optimization model of the MFED service

In this section, we present a multi-objective model for solving
the optimal fleet size and scheduling problems of a feeder bus. The
variables are defined in Table 1.

4.1. Objective function

As stated previously, the running and layover times of vehicles
for each feeder bus line are assumed to be fixed. Then, in-vehicle
riding time is unnecessary when optimizing passengers’ travel
cost. Therefore, one objective function of the model is defined as
minimizing the weighted sum of the average waiting time spent by
all passengers (i.e., average waiting times in the morning and
evening).

min W
�
mj; t
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In this formula, gm and ga represent an individual passenger's
sensitivity level of waiting in the morning and evening, respec-
tively. On the one hand, we aim to minimize the waiting time,
rather than maximize the number of served passengers, to improve
the service quality of public transit for balancing with bike-sharing
service, rather than replacing it. On the other hand, the total
waiting time for all passengers cannot adequately reflect the level
of service for feeder buses because the number of served passen-
gers varies with the changes in a timetable.

The other objective function of the model is defined as mini-
mizing the operator's cost (i.e., expenses minus fare profits), which
is detailed in Section 3.3.

min Z
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4.2. Constraints

The problem presented the following constraints:

(a) Fleet size constraints: In Fig. 1, the bus stop near residential
areas is marked by jðj ¼ 1;…;nÞ, and the stop near the metro
station is denoted by ST. In the morning, the bus headway
between bus stop j and stop ST is defined as Dtj. The running
and layover times are supposed to be trj and tlj, corre-
spondingly. Then, the corresponding fleet is computed using
(3), and the fleet size m is equal to the sum of vehicles
running on each line.

mj ¼
2
�
trj þ tlj

�
Dtj

; cj; (3)

m ¼
X
j

mj: (4)
(b) Trip time constraints: If the average walking time for pas-
sengers living around stop j to reach the nearest bus stop is
twj, then the riding time will be TBj if passengers select
shared bikes for commuting to the metro station. Here, we
assume that the longest waiting time is Dtj. Specifically, a
passenger arrives at the bus stop when the previous bus has
just left and must board the next bus. A passenger's trip time
using feeder buses is set to be no longer than the riding time
to be competitive with bike-sharing systems.



Table 1
Notation for the model.

Parameters

twj: average walking time for passengers from their origins to stop j in the morning

Dtj: headway of vehicles at stop j in the morning
trj: running time of vehicles between stop j and the metro station

TBj: average riding time between stop j and the metro station

tlj: layover time of vehicles between stop j and the metro
tsj: round-trip time between stop j and the metro
c: vehicle capacity
RT: total operating time

n
ti�1
j /tij
mj :

number of passengers at stop j whose arrival time is between ti�1
j and tij in the morning

ntaj: number of passengers with destinations near stop j arriving at time t in the evening

Decision variables

mj: number of vehicles operating between stop j and the metro station in the morning

tij : ith vehicle's arrival time at stop j in the morning

ytaj: number of passengers served by the vehicle with destination near stop j at time t in the evening

htj : number of vehicles with destination near stop j initiated at time t in the evening

Intermediate variables

x
tij
mj:

number of passengers at stop j served by the vehicle arriving at tij in the morning

P
tij
mj:

number of unserved passengers waiting at stop j at the end of time tij in the morning

m: total number of vehicles
Ptaj: number of unserved passengers with destinations near stop j at the end of time t in the evening

vt : number of available vehicles at the metro station at the end of time t in the evening
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twj þDtj þ trj � TBj; cj: (5)
(c) Passenger flow constraints: For stop j, in the morning
period, the cumulative number of passengers that arrive
between the time vehicle i leaves the stop, and the time
when vehicle iþ 1 arrives at the stop is assumed to be
n
ti�1
j /tij
mj . The number of passengers boarding vehicle i is

denoted by x
tij
mj. Expressions (6)e(7) denote the passenger

flow balance in which a is the loss rate of passengers during
the waiting period, and a portion of passengers may shift to
shared bikes. In the evening, passengers exit from the metro
station and have different destinations. Here, we discretize
the time into a 1-min interval, as presented by Hai Wang
(2017). Then, the passenger flow must satisfy Equations (8)
and (9), in which b is the loss rate of passengers during the
waiting period, at the end of time t for the destination stop j.

P
t1j
mj ¼ n

t0j /t1j
mj � x

t1j
mj; cj; (6)

P
tij
mj ¼aP

ti�1
j

mj þ n
ti�1
j /tij
mj � x

tij
mj;cj; i � 1 (7)

PTsaj ¼ nTsaj � yTsaj ; cj (8)

Ptaj ¼ bPt�1
aj þ ntaj � ytaj;cj; t2½Ts; Te� (9)
(d) Service capacity constraints: The number of served pas-
sengers per vehicle must not exceed the vehicle capacity.

x
tij
mj � c;cj; i (10)
ytaj � c;cj; t (11)
(e) Vehicle flow constraints: Equations (12)e(13) define the
number of available vehicles in the transit process in the
evening.

vTs ¼m�
X
j

hTsj ; (12)

vt ¼ vt�1 þ
X
j

ht�tsj
j �

X
j

htj ; ct2½Ts; Te�: (13)
(f) Operating time constraint: The total operating time is equal
to the sum of the morning and evening operating times.

RT ¼ðte � tsÞ þ ðTe � TsÞ: (14)
(g) Other basic constraints: Equations (15)e(17) regulate the
ranges of several decision variables.

ts � tij � te;cj; i (15)

vt �0;ct2½Ts; Te� (16)

Ptaj >0;cj; t2½Ts; Te� (17)

The bi-objective mixed integer programming model is NP-hard
because a portion of the model can be denoted as the�
P; capc

��S; Paj��Graph��P
j
Cj
�
problem, as presented by de Paepe et al.

(2004); this problem has been verified to be NP-hard. Therefore,
heuristics are required to obtain the non-inferior solutions for a
large-scale instance of our model.
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5. MPSO

In this section, a new algorithm (i.e., PSO) combined with a
heuristic algorithm of shifting schedules is proposed to solve the
problem. The input of the algorithm is passenger's demand, transit
round-trip time for each route, riding time, and other parameters.
The output is fleet size and timetable.

The PSO algorithm was first proposed by Kenndy and Eberhart
in 2002. In this algorithm, each particle represents a potential so-
lution to the problem and corresponds to a fitness value computed
by the fitness function. The particle velocity, which is dynamically
adjusted with the moving experience of itself and other particles,
determines the moving direction and distance, thereby optimizing
the goal in a feasible solution space. Goldberg et al. (1988) proposed
to solve the multi-objective optimization problem by combining
Pareto theory in economics with an evolutionary algorithm. Thus,
we receive a non-inferior solution set. In practical application, the
decision-maker selected one of the non-inferior solutions as the
final solution in accordance with their preference.

Subsequently, wewill introduce themanner bywhich to use the
new algorithm for solving our problem in detail.
2 2 1 5

6 2 8 6

9 6 12 9

... ... ... .

30 26 33 32 2

32 30 37 35 3

...

Timetable of vehicle 1 Rou

Time t of fleet

0 0 0 0 ... 0

0 0 1 0 ... 0

0 1 0 0 ... 0

j=1

j=2

j=3

t=1 t=2 t=3 t=4 t=27 t=

Fleet sizeFleet of Route 1

Schedules in the morning

Fig. 3. Example of a s

2 3 4 2 3 1 5t=0

4 4 2 3 1 5t=1

one person leaves

6 2 3 1 5t=2

3 3 1 5t=3

two people

no people lCapacity = 5

Fig. 4. Example of up
5.1. Initial feasible solution

In this study, the key point is to determine the bus frequency for
each line in the morning and schedules of different bus stops in the
evening. Then, iterations are continuously conducted by computing
the objective value, and the optimal solution can be finally ach-
ieved. Notably, multiple scheduling schemes can be generated for
each fleet value. Thus, the method for creating a feasible solution is
first generated by the bus headway for every stop in the morning
according to Constraints (5)e(15). Then, the fleet size can be
determined using Constraints (3)e(4). Finally, the timetable in the
evening can be generated on the basis of Constraints (12)e(13) and
(16)e(17) (see Fig. 3).

The fitness value of the particle is computed by an objective
function. Before calculating the average waiting time of all served
passengers and revenue of the operator, the real-time demand of
passengers in the morning and evening must be updated, thereby
indicating that the demand varies with the bus schedule and is
related to bus capacity (see Fig. 4).

5.2. Regeneration of solutions

The speed and position of the current particle are updated on
3 2 3 3 2 2

6 3 3 2 1 3

.. ... ... ... ... ...

9 1 3 3 2 1

1 0 0 0 0 0

2 3 4

tes of vehicle 1
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of each route

0 0 0

0 0 0

0 0 0
28 t=29 t=30

Schedules in the evening

olution structure.

2 1 2 3 4 2 ...

2 1 2 3 4 2 ...

2 1 2 3 4 2 ...

2 1 2 3 4 2 ...

leave

eave

dating demand.
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the basis of an individual's and overall optimal particle, which is
randomly selected from the non-inferior solutions. The formula for
updating particles is expressed as follows:

Vkþ1 ¼uVk þ c1r1
�
Pkid � Xk

�
þ c2r2

�
Pkgd � Xk

�
; (18)

Xkþ1 ¼Xk þ Vkþ1; (19)

where u is the inertial weight; r1 and r2 are the random numbers
distributed in [0,1]; k is the number of current iterations; Pkid de-
notes the individual's optimal particle position; Pkgd is the global
optimal particle position; c1 and c2 are constants; V is the particle
velocity; and X is the particle position.
5.3. Process of the proposed MPSO algorithm
BEGIN

Randomly generate the bus headway for each stop in the morning
Repeat

Stop.
Else

Repeat
If all stops are enumerated, then

Stop.
Else

in the 
morning
Repeat
If all vehicles of the i

Stop.
Else

Randomly generate the schedules of the kth vehicle of the i
Repeat
If all stops are enumerated, then

Stop.
Else

Obtain the vehicle schedules for stop _ in the evening
Compute the number of unserved passengers at the end of t and the total number of 

served passengers

operator’s profits
Repeat

Stop.
Else

Update the weights

profits

End
6. Numerical analysis

In this section, we use empirical examples to solve and verify
our model. The transit smart and bike-sharing trajectory data
within 2 km of Shuangqiao station on Line 4 of the Chengdu metro
system in China are used to identify the travel demand. Fig. 5 il-
lustrates the location of three residential communities and the
metro station, and Fig. 6 plots the existing bus routes from these
communities to the metro station. Apparently, these routes that
connect communities and metro stations are not well-organized,
thereby leading to an average trip time of 30min to the metro
station from each residential community. However, the average trip
time when taking a taxi is approximately 10min. We suppose that
three feeder bus lines follow the same routes that the taxi travels.
The operation time is half an hour in the morning (7:00 a.m. to 7:30
a.m.) and half an hour (6:30 p.m. to 7:00 p.m.) in the evening.
6.1. Algorithm comparison

We implement and test NSGA-II to compare with the proposed
MPSO for exploring the solution quality and efficiency among
different algorithms. Notably, the methods of chromosome repre-
sentation, initial population, and fitness evaluation using NSGA-II is
the same as using the proposed MPSO because both of these



Fig. 5. Geographical distribution of the communities and metro station.
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approaches are used to solve the same model. The parameters of
the test problem are presented in Table 2.

The operation times are half an hour in the morning and half an
hour in the evening, during which the demand is listed in Table 3.
Here, we use weekly average travel data. In both algorithms, the
number of population and iterations are set to 100 and 200,
respectively. The results are summarized in Table 4.

In Table 4, the number of Pareto front solutions is set to 8 in
NSGA-II. We select the approximate solutions from the solution set
of the proposed MPSO to compare the Pareto solutions computed
through the two algorithms. The results obtained from both algo-
rithms support the fact that increasing the operator's cost leads to a
reduction of a passenger's average waiting time, although the
specific values are slightly different. The objective values are
different because the detailed schedules in the operation period
vary despite having the same fleet size.

Two main criteria, namely, solution quality and computational
cost, are typically used to compare and evaluate the algorithm
performance. In terms of the solution quality, two measures,
namely, diversity and convergence, are commonly used. The former
implies the degree of dispersion of the non-dominated solutions,
while the latter indicates the closeness of the Pareto non-
dominated front solutions to the Pareto optimal front. Here, we
use mean ideal distance (MID) to evaluate the convergence of two
algorithms using Equation (20).

MID ¼
Pn

i¼1Ni

n
; (20)
where Ni denotes the distance from an ideal point (0,0) for each
solution i. Then, the normalized values of the MID for NSGA-II and
proposed MPSO are 0.1982 and 0.1897, correspondingly. The results
show a small difference between the MID of the two algorithms,
thereby indicating that determining the one that performs well in
terms of convergence is difficult. However, for the diversity of so-
lutions, the fleet sizes aremore diverse and uniformly distributed in
the proposed MPSO than in NSGA-II.

In addition, the elapsed time is slightly different. Specifically, the
elapsed time of NSGA-II for the test problem with four feeder bus
stops is 7032.53 s, whereas the proposed MPSO solves the problem
in 4691.97 s. Therefore, the proposed MPSO is more efficient than
NSGA-II.
6.2. Sensitivity analysis

In this section, we perform a sensitivity analysis of the param-
eters involved in the model. The results of the proposed model
under different parameter settings are tested on the basis of the
actual travel data. The testing parameters include the loss rate of
passengers during the waiting period in the morning and evening
and the vehicle capacity (demonstrated in Figs. 7 and 8).

Fig. 7 exhibits the sensitivity of the objective function to
different loss rates. Three cases, namely, a¼ 1, b¼ 1 (no passengers
leave during the average waiting time); a¼ 0.95, b¼ 1 (several
passengers leave during the average waiting time in the morning);
and a¼ 0.9, b¼ 0.95 (several passengers leave during the average
waiting time in the morning and evening), are tested and
compared. The results show that the operator's cost significantly
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Fig. 6. Existing bus routes from the metro station to residential communities: (a) commutiny 1; (b) community 3; (c) community 2.

L. Liu et al. / Journal of Cleaner Production 236 (2019) 11755010



Table 2
Parameters for numerical simulation.

Parameter tr1 tr2 tr3 tl tw1 tw2 tw3

Value (units) 5min 8min 10min 2min 4min 5min 6min

Parameter c p gm ga a b RT

Value (units) 15 seats $ 0.45 0.7 0.3 1 1 1 h

Parameter TB1 TB2 TB3 CB CK

Value (units) 15min 20min 25min $ 7.48/h $ 0.75/h-seat

Table 3
Demand in the operation period.

Time (min) Passenger demand (passengers)

Morning operation period (O: bus stops; D: metro station) Evening operation period (O: metro station; D: bus stops)

Bus stop 1 Bus stop 2 Bus stop 3 Bus stop 1 Bus stop 2 Bus stop 3

t¼ 1 4 1 2 4 8 6
t¼ 2 2 3 3 0 0 0
t¼ 3 1 1 4 0 0 0
t¼ 4 3 3 2 8 4 8
t¼ 5 3 1 1 0 0 0
t¼ 6 4 2 4 0 0 0
t¼ 7 2 2 1 6 7 5
t¼ 8 3 3 1 0 0 0
t¼ 9 4 1 1 0 0 0
t¼ 10 1 2 2 5 5 10
t¼ 11 2 3 3 0 0 0
t¼ 12 2 2 2 0 0 0
t¼ 13 1 2 3 5 9 9
t¼ 14 3 2 1 0 0 0
t¼ 15 2 2 3 0 0 0
t¼ 16 2 2 3 8 6 5
t¼ 17 4 4 1 0 0 0
t¼ 18 1 2 2 0 0 0
t¼ 19 5 1 4 9 6 6
t¼ 20 3 4 3 0 0 0
t¼ 21 5 1 5 0 0 0
t¼ 22 1 1 1 5 9 7
t¼ 23 3 2 2 0 0 0
t¼ 24 1 1 2 0 0 0
t¼ 25 3 4 2 7 8 9
t¼ 26 2 2 4 0 0 0
t¼ 27 1 1 1 0 0 0
t¼ 28 1 4 3 8 10 7
t¼ 29 4 1 3 0 0 0
t¼ 30 2 3 2 0 0 0

Table 4
Comparative results of NSGA-II and the proposed MPSO.

Number of solutions NSGA-II Proposed MPSO

Operator's cost ($) Average waiting time (min) Fleet size Operator's cost ($) Average waiting time (min) Fleet size

1 46.08 9.314 5 57.30 8.614 5
2 74.95 7.224 6 78.54 6.829 6
3 105.62 5.594 7 139.73 5.103 7
4 142.57 4.985 8 151.55 4.247 8
5 279.16 3.091 12 177.28 4.116 9
6 299.80 2.866 12 207.05 3.255 10
7 305.34 2.573 13 244.90 3.195 11
8 338.25 2.223 14 294.42 2.993 12
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increases when the average passenger waiting time falls within a
small range (approximately 2e3min), thereby indicating that a
certain degree of passenger loss rate can obtain relatively high-
quality non-inferior solutions. Moreover, the solution with the
highest passenger loss rate presents the worst quality solution
when the average passenger waiting time is between 4.5 and 6min,
mainly because few people actually take the feeder buses.
Fig. 8 illustrates the sensitivity of the objective function to
different vehicle capacities. Similarly, we analyze the cases where
the vehicle capacities are 10, 12, and 15. A small vehicle capacity
indicates an improved solution quality when the passenger waiting
time is between 2 and 3min.
6.3. Mode comparison

6.3.1. Comparison with the MDEF mode
First, we compare the MFED and MDEF modes. The result
(shown in Fig. 9) demonstrates that the MFED mode outperforms
the MDEF mode, thereby indicating that the demand responsive
mode is preferred to serve the evening passenger demand. This
conclusion is consistent with the finding of Li and Quadrifoglio
(2010). As previously mentioned, the arrival of passengers in the
morning is unevenly distributed in comparison with passengers



1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
-300

-200

-100

0

100

op
er

at
or

's
in

co
m

e

passenger average waiting time

a=1,b=1
a=0.95,b=1
a=0.9,b=0.95

Objective

Loss rate of passengers

Objective

Loss rate of passengers

Fig. 7. Sensitivity of the objective function to different passenger loss rates.

2 3 4 5 6
-300

-200

-100

0

100

op
er

at
or

's
in

co
m

e

passenger average waiting time

v=15
v=12
v=10

Objective

Vehicle capacity

Fig. 8. Sensitivity of the objective function to different vehicle capacities. Fig. 9. Non-inferior solutions of the MFED and MDEF modes.
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egressing in batches with the same interval (that is, the arrival
interval of the train) in the evening. This finding may indicate that
the MDEF service (i.e., MDEF mode) will be appropriate. In contrast
to our intuitive perception, the results show that the MFED mode
outperforms the MDEF mode. This finding indicates that the
pattern of fixed frequencies is unsuitable for the even demand
distribution. This conclusion is easy to understand because the fleet
size and vehicle schedules for multiple facets must be jointly
planned considering the overall profit from the perspectives of
passengers and operators. Furthermore, the number of passengers
on each route is particularly important. This aspect is related to
busload factor and indirectly reflects the requirement to dispatch a
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vehicle.
6.3.2. Comparison with the MFEF mode without considering the
influence of bike-sharing systems

In practice, shared bikes are unsuitable alternatives for most
passengers when the weather is adverse (such as rainy or snowy
days), and thus the operator can arrange the feeder bus schedule
without considering the effect of bike-sharing. As previously
defined, MFEF indicates that each feeder bus line has a fixed
schedule during themorning and evening operation periods. In this
case, we compare the average passenger waiting time and opera-
tional cost under the MFED and MFEF modes. The result is pre-
sented in Fig. 10. The number of population and iterations are 100
and 200, correspondingly.

Evidently, the solution quality is generally better under the
MFED service than under the MFEF mode. A marginal difference in
the operator's cost is observed when the average passenger waiting
time is approximately 4min. However, a distinct difference in the
operator's cost is observed when the passengers' average waiting
time is approximately 6min. Furthermore, the increase in the
passenger waiting time for the MFED mode results in minimal
growth in the operator's profits when the passengers' average
waiting time is 8min. Similarly, this phenomenon applies to the
MFEF mode when the passenger's average waiting time is 10min.

In practice, two thresholds (4 and 8min for the MFED mode in
the abovementioned example) are used for average passenger
waiting time, which correspond to two operating schedules. The
operating company must select the operating schedules that the
relatively low threshold corresponds to when it aims to serve
considerable passengers (while ensuring the income as high as
possible). By contrast, the operating company must select the
operating schedules that the relatively high threshold corresponds
to when it aims to gain considerable profits (while ensuring
average passenger waiting time as low as possible).
6.3.3. Comparison with the MFEF mode considering the influence of
bike-sharing systems

We also compare the average passenger waiting time and
operation cost under different modes considering the effects of
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Fig. 10. Non-inferior solutions of the MFED and MFEF
bike-sharing on feeder buses. The result is illustrated in Fig. 11.
In this figure, the MFED mode generally performs better than

the MFEF mode. From the passengers' perspective, the solutions
under both modes are relatively close when the average waiting
time is approximately 4min. However, the amount of non-inferior
solutions is evidently less under the MFED mode than under the
MFEF mode. In this case, a small increase in passengers' average
waiting time can result in a large increase in operators' profits. The
opposite outcome occurs when the passengers’ average waiting
time is 7min. This condition is due to the passenger may switch to
shared bikes if the bus waiting time is particularly long. Conse-
quently, the number of served passengers decreases, thus slowly
increasing the operational profits.

Fundamentally, the operator can still select the satisfying bus
schedules in accordance with valuable factors, such as limited
funds and living rhythm, that is, time sensitivity of urban residents,
when bike-sharing and feeder transit services are available for
passengers to connect the metro line. In addition, the manner by
which to determine the optimal fleet size and bus schedules when
the metro train is delayed for certain reasons, that is, the train
arrival interval is unfixed, will be explored in future research.
7. Conclusions and further research

Few studies considered the bimodal period when optimizing
feeder transit service. In this study, we propose a hybrid operation
mode, which combines the fixed and dynamic schedules in a
bimodal period to connect the metro system. However, when
optimizing the dynamic schedules, the fleet size is usually set to be
fixed values. We optimized them jointly in this paper under MFED
operation modes by creating a multi-objective model, which aims
at minimizing the average waiting time of passengers and maxi-
mizing the operator's profits. In the modeling process, the effect of
bike-sharing on buses is incorporated to mimic the interplay be-
tween public transit and biking, which has rarely been addressed in
the previous literature.

Moreover, we propose an improvedMPSO algorithm to solve the
multi-objective model. An empirical study with three residential
communities and one metro station in Chengdu, China is adopted,
0 -150 0 150
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ideration about bikesharing)

modes (regardless of the effect of bike-sharing).
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Fig. 11. Non-inferior solutions of the MFED and MFEF modes (considering the effect of bike-sharing).
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and the effectiveness and efficiency of the proposed algorithm are
tested. No significant difference is observed in the quality of the
solutions obtained by the two algorithms by comparing NSGA-II,
which has been extensively used to solve the multi-objective
problem. However, the computational time is significantly dimin-
ished mainly because NSGA-II can search for considerable solution
regions. A sensitivity analysis of passenger loss rate during the
waiting period and vehicle capacity proves the efficiency and
applicability of the MFEDmode. In addition, we compare this mode
with the other hybrid operation mode (i.e., MDEF) to assist transit
authorities in selecting the optimal feeder bus operating policy. The
result showed that the MFED operation mode could achieve higher
quality solutions than MDEF mode. The findings can assist transit
authorities in making optimal feeder bus operating policies to
provide high-quality fixed/demand-responsive transit service. Be-
sides, average passenger waiting time can reflect the satisfaction
level of passengers regarding transit service to a certain extent,
thereby the proposed optimization framework also helps transit
authorities to weigh the profits against service quality for decision
making. For example, how many buses should be procured in
advance to achieve a win-win situation for both passengers and
operators.

We further examine the influence of bike-sharing systems by
comparing it with the MFEF mode with/without biking. Both sce-
narios can be applied in practice. For example, transit operators can
ignore the effect of bike-sharing under extremeweather conditions
and appropriately adjust feeder bus scheduling to obtain a balance
between passenger satisfaction level and operating cost. Interest-
ingly, a marginal increase in thewaiting time leads to a large gain in
operating profits when passengers’ average waiting time is rela-
tively short (approximately 4min in the example). The opposite
outcome occurs when the waiting time has reached a certain value
(approximately 7min in the second example). This situation is
reasonable because passengers may not opt to take the feeder bus if
the waiting time is excessively long, thereby resulting in the loss of
travel demand.

For future research, researchers who are interested in this field
must attempt to consider the following aspects: (1) The influence of
feeder bus fare on passenger's travel choice behavior; (2) stochastic
running time must be considered in the optimization model; and
(3) unreliable train schedules and probabilistic passengers' walking
time can be also examined.
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