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Detecting reciprocity at a global scale
Morgan R. Frank,1 Nick Obradovich,1,2 Lijun Sun,1 Wei Lee Woon,3

Brad L. LeVeck,4 Iyad Rahwan1,5*

Reciprocity stabilizes cooperation from the level ofmicrobes all thewayup tohumans interacting in small groups, but
does reciprocity also underlie stable cooperation between larger human agglomerations, such as nation states?
Famously, evolutionary models show that reciprocity could emerge as a widespread strategy for achieving inter-
national cooperation. However, existing studies have only detected reciprocity-driven cooperation in a small number
of country pairs. We apply a new method for detecting mutual influence in dynamical systems to a new large-scale
data set that records state interactions with high temporal resolution. Doing so, we detect reciprocity betweenmany
country pairs in the international systemand find that these reciprocating country pairs exhibit qualitatively different
cooperative dynamics when compared to nonreciprocating pairs. Consistent with evolutionary theories of coopera-
tion, reciprocating country pairs exhibit higher levels of stable cooperation and aremore likely to punish instances of
noncooperation. However, countries in reciprocity-based relationships are also quicker to forgive single acts of non-
cooperation by eventually returning to previous levels ofmutual cooperation. By contrast, nonreciprocating pairs are
more likely to exploit each other’s cooperation via higher rates of defection. Together, these findings provide the
strongest evidence to date that reciprocity is a widespread mechanism for achieving international cooperation.
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INTRODUCTION
The international system lacks a single sovereign capable of enforcing
cooperative agreements (1–4). Therefore, stable intercountry cooper-
ation relies, in part, on countries’ self-interest for its propagation (5).

Because reciprocity in repeated games incentivizes cooperation (6–9),
even in the absence of external enforcers, reciprocity may provide a
crucial explanation for bilateral cooperation across a wide variety of
international domains, including trade (10), the maintenance of inter-
national law (11), the avoidance of war (12), and protecting the
environment (13). In addition, recent experimental studies show that
bilateral reciprocity between pairs of actors can sustain cooperative
contributions to a shared public good (14). Therefore, bilateral reci-
procity may even underlie some instances of multilateral cooperation,
such as global emissions agreements.

Moreover, both evolutionary models (6, 9, 15–19) and laboratory
experiments (7, 8, 20) show that simple strategies of reciprocity, such
as Tit-for-Tat, can become widespread in a population—at least when
actors place a sufficiently high value on the payoff for future cooper-
ation (8, 20). Because states are long-lived actors that typically interact
for indefinite periods of time, scholars have hypothesized that Tit-for-
Tat–like reciprocity may similarly emerge as a prevalent strategy in
international relations (1, 12, 15, 21). If so, cooperative reciprocity
should be detectable across a large number of country pairs. Further-
more, while Tit-for-Tat is a reciprocity-based strategy derived for spe-
cific types of games (for example, the prisoner’s dilemma), we expect
more generalized notions of reciprocity (22, 23) to drive international
cooperation as well.

Yet, despite the central role of reciprocity in theories of interna-
tional cooperation, no study has conclusively detected reciprocity-
driven cooperation in a large number of country pairs. To be certain,
many studies have used a variety of methods to detect Tit-for-Tat
reciprocity between small sets of countries, usually on the order of
two or three (21, 24–29). However, these findings do not speak to
whether these relationships are highly prevalent in the manner
implied by theoretical models.

Meanwhile, a few recent studies have shown that interactions
betweenmany country pairs are consistent withmodels of reciprocity,
as states’ cooperation toward one another is temporally correlated
(30, 31). However, these studies do not investigate whether the dynam-
ics of reciprocity help stabilize cooperation between country pairs.
Therefore, these studies do not indicate whether reciprocity actually
represents a mechanism for widespread, stable cooperation. Similarly,
past research has found cooperation in large-scale international
institutions, such as the World Trade Organization, and argued that
such cooperation may be theoretically explained by in-kind reciproc-
ity between member states (32). Yet, this observation is very different
from demonstrating that dynamics of bilateral reciprocity are detect-
able within these institutions and, furthermore, that such dynamics
drive cooperation.

Beyond the usual difficulties in detecting influence in observational
data, detecting reciprocity in the international system has at least two
additional challenges. First, reciprocity requires cooperation between
states to be coupled, such that cooperation by state A toward state B
influences cooperation by state B toward state A and vice versa. Un-
fortunately,many existingmethods, usually based onGranger causality,
are ill-suited to detecting such coupling because they require the influ-
ence of each variable to be linearly separable (33). A second challenge is
thatmanymodels for detecting reciprocity can reach the wrong conclu-
sion if they ignore the fact that relations between pairs of states typically
exist within a broader web of interstate relations (27, 30, 31, 34, 35).
These methodological difficulties, when combined, may help explain
why empirical research has yet to confirm many of the predictions
made by evolutionary models of international cooperation.

Here, we address these methodological issues by using convergent
crossmapping (CCM),which is a recently developedmethod for detecting
mutual influence in coupled systems, first introduced by Sugihara et al.
(33). This method has been shown to detect coupling in systems
where Granger causality–basedmethods fail (33, 36) and can still detect
mutual influence when pairs are embedded in a larger network of
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interactions (33, 37, 38). Using this method, we are able to detect
reciprocity in at least 47 state pairs. We show that the cooperative
dynamics in these state pairs are consistent with evolutionarymodels
of reciprocity. Specifically, we demonstrate the willingness to sustain
cooperation and to forgive minor instances of noncooperation in
reciprocity-based relationships.
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RESULTS
Applying CCM to the directedGoldstein time series of countryA’s level
of cooperation with country B, and vice versa, identifies pairs of coun-
tries exhibiting “CCM reciprocity” [that is, CCM(A, B) ≥ 0.25 and
CCM(B, A)≥ 0.25]. If countries A and B have CCM reciprocity, then
country A’s treatment of country B “CCM causes” country B’s treat-
ment of country A and vice versa. Examples of reciprocating country
pairs are often nearby spatially, such as Russia andUkraine, which share
a border, but the reciprocity between China and the United Kingdom
demonstrates how an increasingly connected world allows influence to
span distance as well (see Fig. 1D). In total, we detect 47 country pairs
exhibiting CCM reciprocity.

Mathematically, CCM reciprocity is not necessarily direct reciproc-
ity because CCM influence may not preserve valence (that is, does co-
operation breed cooperation in kind?). However, compared to
nonreciprocating country pairs, CCM reciprocity indicates country
Frank et al., Sci. Adv. 2018;4 : eaao5348 3 January 2018
pairs that aremore likely to cooperate regardless of recent interactions
(see Fig. 2, A and B) and are more likely to engage in conflict in re-
sponse to recent conflict (see Fig. 2D). Moreover, Fig. 2A shows that
the dynamics of cooperation differentiate between reciprocity- and
nonreciprocity-based relationships. Compared to rates of cooperation
on aggregate, countries in reciprocity-based relationships are more
likely to cooperate in response to cooperation by the other state,
whereas countries that are not in reciprocity-based relationships are
less likely to cooperate in response to cooperation. Therefore, countries
in reciprocity-based relationships appear to bolster and reinforce each
other’s cooperation through increased willingness to meet cooperation
with cooperation. On the other hand, countries in nonreciprocity-
based relationships are more likely to exploit other states’ cooperation
due to decreased rates of cooperation in kind.

It is also the case that country pairs in reciprocating relationships
are more likely to mirror the specific type of cooperation or conflict
that is directed at them (see Fig. 3). This preservation of valence fur-
ther indicates that CCM reciprocity serves as a plausible proxy for
direct reciprocity. It is also important that valence is preserved for both
verbal interactions (Fig. 3, C and D) and material cooperation and
conflict (Fig. 3, A and B). This suggests that our results are not purely
explained by “cheap talk,”which is abundant in international relations
(39, 40), but also rely onmore “costly”material interactions. Additional
comparisons are provided in section S3, including response to recent
 on M
ay 10, 2020
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Fig. 1. Mapping cooperation, influence, and reciprocity in the EuropeanUnion (EU) and around theworld. (A) The directed Goldstein time series for the United States
(USA)–Russia (RUS) relationship. The time series have been smoothed using a 30-daymoving average for visualization purposes. (B) A network representing overall attitude of
EU countries, the amount of interaction between nations (darker edges indicate more actions), and how cooperative interactions are on average (edge width). (C) A network
representation of influence among EU nations [that is, CCM(A, B) ≥ 0.25). ]. (D) Countries are colored according to their total imposed influence on others, and yellow lines
connect pairs of countries exhibiting reciprocity. Gray countries had insufficient data for CCM analysis.
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cooperation or conflict compared to aggregate cooperation/conflict on
a pair-by-pair basis and response by quad class interaction type.

A willingness to sustain cooperation and forgive transgressions
can be crucial for the evolution of cooperation (16, 20)—especially
when there is a chance that players will mistake the intent or nature
Frank et al., Sci. Adv. 2018;4 : eaao5348 3 January 2018
of each other’s actions (20). These strategies may therefore be espe-
cially important in international cooperation, where there is a high
risk that such misperceptions will occur (41, 42). It is therefore
interesting to see that reciprocating country pairs are more willing
to sustain cooperation (see Fig. 2A) and more likely to return to
A B

C D

Fig. 2. Country pairs exhibiting reciprocity are cooperative on average but reciprocate conflict. Given an observation of cooperation (left) or conflict (right), reciprocat-
ing country pairs aremore likely to cooperate (A andB) regardless of recent interaction, less likely to conflict given recent cooperation (C), butmore likely to reciprocate conflict
(D) in the cumulative interactions of the following day, 3 days, and 7 days (x axis). Each point represents the average rate of cooperation or conflict between countries A and B,
denoted by PAB, for reciprocating country pairs (yellow) or nonreciprocating country pairs (purple), and error bars represent the standard error. Probabilities (y axis) have been
shifted according to the aggregate probabilities of cooperation or conflict, respectively, across the entire Integrated Crisis Early Warning System (ICEWS) data set.
A B

C D

Fig. 3. CCM reciprocity indicatesmirroringof specific interaction types. Given an observed interaction type (x axis, denoted byQ) between a country pair with (yellow) or
without (purple) CCM reciprocity, we plot the probability (y axis) of (A) material cooperation, (B) material conflict, (C) verbal conflict, and (D) verbal cooperation in the day
following the interaction (see section S3 for additional time windows).
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cooperating several days after conflict (see Fig. 2B). These findings
demonstrate that reciprocity is characterized by higher levels of for-
giveness even when faced with noncooperation.

Although we can study the relationship of a country pair in isola-
tion, these dyadic relationships also exist as part of a web of interstate
relations (27, 30, 31, 34, 35). In particular, previouswork has considered
international relations as a network and examined network properties,
such as degree centrality (43, 44), in relation to a country’s willingness
to adopt international environmental policy. CCM can be used to
construct a “network of influence” (see Fig. 4A) where each country
is a node, and country A is connected to country B with a directed link
if CCM(A, B) ≥ 0.25. The global network of influence not only high-
lights the prevalence of two-cycles (we have already noted that there
are 47) but also points to the existence of more complicated structures
comprising pathways along which influence might propagate. For ex-
ample, we find 15 three-cycles in the network of influence (see Fig. 4B),
which suggests the possibility for generalized reciprocity (22, 23), in
addition to direct reciprocity, as a factor in international relations.

On aggregate, how do shared levels of cooperation relate to recipro-
city? Country pairs with greater shared influence [that is, (CCM(A,B) +
CCM(B, A))/2] also exhibit a greater correlation between their di-
rected Goldstein time series (see Fig. 4C). Similar to our results in
Fig. 3, this relationship is broadly consistent with models of Tit-for-
Tat reciprocity, where players respond in kind to each other’s previous
actions. However, CCM influence is also not the same thing as a simple
Frank et al., Sci. Adv. 2018;4 : eaao5348 3 January 2018
correlation in each country’s level of cooperation toward the other.
There are country pairs that exhibit high levels of CCM influence
but have a relatively low correlation between their directed Goldstein
time series. One reason thismay occur is if countries usemore complex
strategies to determine whether to defect or return to cooperation. For
example, if countries use forgiving strategies that wait for several
transgressions before retaliating (16, 20, 41, 42), this can weaken the
correlation between their directed Goldstein time series. Another rea-
son is a potential asymmetry of influence (see section S5 for example
country pairs) between pairs of countries exhibiting asymmetries in
military and/or economic power. For example, the relationship be-
tween the United States and Taiwan is thought to be hierarchical such
that the weaker partner unconditionally cooperates with U.S. defense
policy in the region (45). In this situation, Taiwan’s cooperation
toward the United States may be less influenced by the United States’
cooperation toward it even though it is influenced byU.S. directives on
regional defense policy. This analysis suggests that forgiving strategies
may ease the transition from an asymmetrical relationship into one
based on reciprocity.
DISCUSSION
Together, the findings in this study help resolve a long-standing
question about the global presence of reciprocity in cooperative inter-
national relations. Markers of reciprocity are detectable in a sizable
 on M
ay 10, 2020
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Fig. 4. Generalizing reciprocity fromcountrypairs in isolation. (A) Theglobal influencenetwork. Countries are representedbynodes. Anarrowconnects countryA to country
B ifCCM(A,B)≥0.25. Node size and color reflect thenode’s out-degree. (B) Thenumber of twoand three cycles in theglobal influencenetwork. (C) Country pairswith higher shared
influence [that is, (CCM(A,B) + CCM(B,A))/2; x axis] have increasingly correlated attitudes toward each other (y axis). Marker colors indicatewhether the country pair has reciprocity
[that is, CCM(A, B) ≥ 0.25 and CCM(B, A) ≥ 0.25; yellow] or not (purple). The black dashed line represents a LOWESS (locally weighted scatterplot smoothing) regression fit.
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number of country pairs, and reciprocity is associated with patterns of
cooperation that mirror patterns found in both simulation-based
studies (6, 9, 15–17) and experiments involving individual human
decision-makers (7, 8, 20). Combining these observations, we con-
clude that reciprocity is a widespread mechanism for achieving inter-
national cooperation.

With this conclusion in mind, we note that our methods may miss
short time scale relationships betweennations that interact sporadically,
thus implying that our finding of 47 reciprocity-based relationships is
a lower bound for the true number of international relationships based
around direct reciprocity. Detecting sporadic reciprocating relationships
will require new methods that may be applied to sparse data and rela-
tionships spanning shorter time periods. These methods would allow
for investigations into the creation or destruction of reciprocity-based
relationships and an understanding of sparser reciprocity-based inter-
national interactions, which have been observed in case studies (29).

Our observation of many reciprocity-based relationships by study-
ing country pairs in isolation suggests thatmore generalized notions of
reciprocity may also influence cooperation in international relations.
Although the interactions shared between a pair of countries likely
contain the bulk of information about cooperation between those
countries, additional contextual information may be embedded in
the relationships these countries maintain with shared third parties.
We believe that future work investigating the network effects of coop-
eration might uncover further evidence of generalized reciprocity,
thus further supporting our conclusion that reciprocity is widespread
in international relations.

Motivated by Wang et al. (46), we demonstrate the robustness of
our analysis to several potential sources of bias in the ICEWS data (see
section S2). New alternative event data sets may benefit from recent
improvements in machine learning for event classification, but these
data sets do not yet span sufficiently long time periods to apply our
methods. The maturation of these new data sets will allow new insight
into reciprocity’s role in international relations.

In addition to informing long-standing questions in the social
sciences, our findings may inform policy choices. In recent decades,
some policymakers have questioned the centrality of reciprocity to
the maintenance of international cooperation and have placed greater
emphasis on unilateral action by international superpowers (47). Our
findings support the claim that powerful countries exert a high level of
influence on cooperation in the international system. However, much
of this influence is mutual, meaning that such cooperation is still
determined, in part, by in-kind reciprocity rather than by the uni-
lateral actions of a particular state. Furthermore, in agreement with
simulated and experimental cooperation games, our evidence suggests
that reciprocity leads to stable cooperation even in the face of minor
transgressions, thus highlighting the benefits of enduring the costs of a
reciprocity-based relationship through forgiving reciprocity-based
strategies. Therefore, even policymakers in powerful countries should
bemindful of the fact that unilateral noncooperation in areas like trade
or the environment may engender a costly, negative response from
many of the countries with whom they regularly interact.
MATERIALS AND METHODS
Data set
The ICEWS (48) is an event data set consisting of coded interactions
between sociopolitical actors (that is, cooperative or hostile actions
between individuals, groups, sectors, and nation states) during the
Frank et al., Sci. Adv. 2018;4 : eaao5348 3 January 2018
span of years from 1995 to 2015. Events were automatically identified
and extracted from news articles by the BBN ACCENT event coder.
These events were essentially triples consisting of a source actor, an
event type [according to the Conflict and Mediation Event Observa-
tions (CAMEO) taxonomy of events, explained below], and a target
actor. Geographical-temporal metadata were also extracted and asso-
ciated with the relevant events within a news article.

CAMEO event categories represent a standardized encoding of
types of interactions between sociopolitical actors. Furthermore, each
event type, e, is associated with a real-valued interaction Goldstein
score, ge, between −10.0 (conflictive) and 10.0 (cooperative) (49) (that
is, ge ∈ [−10, 10]). CAMEO events contain a hierarchical structure; the
highest abstraction consists of only four classes, called quad classes,
which are verbal cooperation, material cooperation, verbal conflict,
andmaterial conflict. See section S1 for the distribution of quad classes,
the distribution of Goldstein scores for CAMEO events occurring in
the ICEWS data, and the resulting distribution of Goldstein scores
occurring after weighting the CAMEO event type by rate of occurrence
in the ICEWS data set.

Measuring international cooperation
Wemeasured temporal changes in conflict and cooperation between a
pair of countries as follows: Given the complete set of CAMEO event
types, C, we calculated the average Goldstein score for a collection of
interaction events from ICEWS, E, according to

GSðEÞ ¼ ∑
e∈C

ge ⋅ fEðeÞ
∑e∈C fEðeÞ

¼ ∑
e∈C

ge ⋅ pEðeÞ ð1Þ

where fE(e) is the frequency of event e in E and pE(e) is the probability
of observing an event of type e in E.

Following work with similar data (50, 51), we applied this calcula-
tion to the collection of events between a pair of countries on each day.
As a result, we produced a time series capturing the temporal fluctua-
tions of cooperation in that relationship.

Specifically, to capture the dynamics between countryA and country
B over time, we calculated the average Goldstein score for the events in
the ICEWS data set with source countryA and target countryB on each
day. We denote the collection of events and dates detailing the directed
relationship between country A and country B using EA,B.

Several existing works highlight the open-ended question regarding
how to aggregate temporal data when calculating average Goldstein
scores (51). However, we will focus on daily time series here because
daily interactions are the finest temporal resolution available in the
ICEWS data set.

The resulting Goldstein time series can be noisy. For plotting
purposes, we used a 30-day moving average to smooth out time series
so as to reveal the dominant trends (see Fig. 1A for an example of re-
lationship time series). However, all measurements and calculations
were carried out using the raw unsmoothed time series. Finally, we
used linear interpolation to fill time periods with missing data or no
data, but we did not consider time series with gaps exceeding 100 days
or interactions involving countries without data on at least half of all
days in the data set (see fig. S4A for the distribution of maximum gap
lengths for time series considered in this study). As a robustness check,
we demonstrated that key results about reciprocating country pairs
remain true when using cubic interpolation instead of linear interpo-
lation (see fig. S4, B to I).
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Measuring influence with CCM
Using these temporal patterns of cooperation and conflict, to what ex-
tent does countryA’s level of cooperation with country B influence B’s
level of cooperation with A and vice versa? Although “influence”may
have a more general meaning in other settings, we take the term to
represent a causal relationship between the cooperation levels of
country pairs. CCM (33, 52) is a new method for detecting dynamical
causality, or influence, from time series and has been used for causal
inference fromdynamical systems in ecology (36), in empirical studies
of social media (38), and in empirical studies of neuroscience (37).
CCM uses the closeness of points in one time series to reconstruct a
second time series; if the reconstructed time series accurately models
the empirical time series according to Pearson correlation [typically
CCM(A, B) ≥ 0.25 for noisy empirical data (33)], then we conclude
that the second time series causally influences the first time series (see
section S2 for calculation and sections S2.1 to S2.3 for details on vary-
ing the CCM influence threshold). As an example, Fig. 1 (B and C)
demonstrates the attitudes and influence fromdirectedGoldstein time
series among European Union nations based on interactions from
1995 to the end of 2014. In addition to the comprehensive description
provided by Sugihara et al. (33, 52), we provided a detailed description
of CCM applied to a classic dynamical system and to ICEWS data in
section S2.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/eaao5348/DC1
section S1. Summarizing ICEWS
section S2. Measuring influence using CCM
section S3. Characterizing instances of reciprocity
section S4. Varying thresholds for CCM reciprocity
section S5. Country pairs with asymmetric influence
fig. S1. The distributions of Goldstein scores by CAMEO event type occurring in the ICEWS data set.
fig. S2. The distribution of CAMEO quad classes in the ICEWS data set.
fig. S3. The number of events per day during the entire ICEWS data set.
fig. S4. Gaps in interactions between country pairs are small.
fig. S5. An example from dynamical systems.
fig. S6. Examples of shadow manifolds.
fig. S7. Using nearest neighbors of shadow manifolds to recover variable dynamics.
fig. S8. Using CCM to infer causality between using United States (USA) treatment of Saudi
Arabia (SAU) and Saudi Arabia’s treatment of the United States (E = 200, t = 1).
fig. S9. The number of pairs of countries exhibiting CCM reciprocity (y axis) during four 5-year
time periods (x axis) as we vary the minimum influence threshold (that is, minimum Pearson
correlation of CCM reconstruction, indicated by color).
fig. S10. CCM causation decreases with increased artificial noise.
fig. S11. The effects of biased news data (l = 0.00).
fig. S12. The effects of biased news data (l = 0.10).
fig. S13. The effects of biased news data (l = 0.20).
fig. S14. The effects of biased news data (l = 0.30).
fig. S15. The effects of biased news data (l = 0.40).
fig. S16. The effects of biased news data (l = 0.50).
fig. S17. The effects of biased news data (l = 0.60).
fig. S18. The effects of biased news data (l = 0.70).
fig. S19. The effects of biased news data (l = 0.80).
fig. S20. The effects of biased news data (l = 0.90).
fig. S21. Main results using CCM analysis with E = 200 and t = 2.
fig. S22. Main results using CCM analysis with E = 200 and t = 3.
fig. S23. Main results using CCM analysis with E = 200 and t = 4.
fig. S24. Main results using CCM analysis with E = 200 and t = 5.
fig. S25. Countrypairs exhibitingCCMreciprocity aremore likely to reciprocate cooperationor conflict.
fig. S26. The patterns of behavior in the day following an interaction.
fig. S27. The patterns of behavior in the three days following an interaction.
fig. S28. The patterns of behavior in the week following an interaction.
fig. S29. The patterns of behavior in the month following an interaction.
fig. S30. The effects of varying the CCM threshold for causality.
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fig. S31. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.15]
are connected using yellow edges.
fig. S32. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.20]
are connected using yellow edges.
fig. S33. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.25]
are connected using yellow edges.
fig. S34. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.30]
are connected using yellow edges.
fig. S35. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.35]
are connected using yellow edges.
fig. S36. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.40]
are connected using yellow edges.
fig. S37. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.45]
are connected using yellow edges.
fig. S38. Pairs of countries exhibitingCCM reciprocity [that is, CCM(A, B)≥ 0.15 and CCM(B,A)≥ 0.50]
are connected using yellow edges.
table S1. Nations ordered by total imposed influence.
table S2. The Pearson correlation for proportion of interactions of each quad class between a pair
of countries to the shared influence for that pair of countries.
table S3. Country pairs ordered by increasing absolute difference in directed influence [that is,
CCM(A, B) − CCM(B, A)].
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