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Understanding the long-term impact that changes in a city’s transportation

infrastructure have on its spatial interactions remains a challenge. The

difficulty arises from the fact that the real impact may not be revealed in

static or aggregated mobility measures, as these are remarkably robust to per-

turbations. More generally, the lack of longitudinal, cross-sectional data

demonstrating the evolution of spatial interactions at a meaningful urban

scale also hinders us from evaluating the sensitivity of movement indicators,

limiting our capacity to understand the evolution of urban mobility in depth.

Using very large mobility records distributed over 3 years, we quantify the

impact of the completion of a metro line extension: the Circle Line (CCL) in

Singapore. We find that the commonly used movement indicators are

almost identical before and after the project was completed. However, in com-

paring the temporal community structure across years, we do observe

significant differences in the spatial reorganization of the affected geographi-

cal areas. The completion of CCL enables travellers to re-identify their desired

destinations collectively with lower transport cost, making the community

structure more consistent. These changes in locality are dynamic and charac-

terized over short timescales, offering us a different approach to identify and

analyse the long-term impact of new infrastructures on cities and their

evolution dynamics.
1. Introduction
Cities, as the core of modern society, are playing increasingly important roles

through global urbanization, providing people with housing, transportation,

communication and functional institutions for various social activities. Enabled

by the transportation infrastructure layer, diverse social interactions among var-

ious entities shape a city’s interaction layers, creating social economic outputs,

which further spur the growth of the cities themselves [1–4]. Created by indi-

viduals’ trips for work, school, shopping and other social activities, intra-urban

movement is a crucial part of these spatial interactions. Intra-urban movements

exhibit strong spatial and temporal patterns, which play an important role in

urban planning and traffic forecasting [5–7]. Taking travel demand as an

example, previous studies have focused on developing models to estimate

current and predict future interaction intensity based on social and infrastruc-

tural input for planning purposes [8–13]. Although extensive efforts have

been made using travel diary data collected from household surveys and inter-

views [6,7], studies on individual/collective movement still suffers from their

small sampling shares, high cost, infrequent periodicity and limited accuracy.

As a result, despite the observations telling us that near things are more

related than distant things’ geographically [14], studies trying to integrate the
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infrastructure and interaction layers have remained limited

due to the lack of detailed longitudinal data measuring

change at high spatial and temporal resolutions.

The emerging individual-based large-scale datasets have

allowed us to trace our daily behaviour pattern in detail, shifting

our understanding on individual mobility from random to pre-

dictable [15–17]. The smart card data also show pronounced

advantages in depicting the structure of collective encounter

networks given the large share of public transit (capturing

more than 63% of total mobility in Singapore) [18]. Besides

revealing mobility regularity, these datasets also help us further

understand human mobility-induced spatial interactions,

which are crucial to various urban diffusion processes such as

epidemic spreading, knowledge-spillover and social contagions

[19–21]. Thus, recent studies demonstrate an increasing use of

network theory to model diverse types of interactions (from

transportation to digital communication) on multiple scales

(state, country and global) [22], documenting the importance

of such interactions among spatial units in shaping network

typologies [23–27]. This paper analyses intra-urban movements

using three one-week transit use data, including both bus and

metro systems, from 3 years (11–15 April 2011; 19–23 March

2012; and 8–12 April 2013) in Singapore. We place special

emphasis on the study of a key transportation infrastructure—

the extended Circle Line (CCL; Mass Rapid Transit service),

which provides us an ideal natural observation to investigate

how such large infrastructures influence human mobility, and

how the resulting spatial interactions shape the structural

evolution of a city. The first stage of the CCL (the Eastern

half; figure 4d, coloured orange) has been in operation since

2010. After the competition of the second Western half, the

CCL has been fully operational (35.7 km in total; figure 4e)
since October 2011. This metro line cost about 10 billion Singa-

pore dollars (roughly 8 billion US dollars), carrying about half a

million passengers daily today (0.37 million per day in stage 1

and 0.53 million per day after opening stage 2). It seems reason-

able that such a large infrastructure project should affect local/

global mobility patterns and city structure, by first influencing

individual travel patterns, and then by prompting second-

order effects such as new businesses and real estate. Indeed,

such effects can be measured by looking at the usage patterns

of the extension and the geographical space where it occurs

[28]. However, these approaches suffer notable limitations

when analysing city-wide movements. First, we miss how this

local change affects global/city-scale patterns: we cannot tell

whether the new service alters mobility patterns by merely

looking at local travel patterns. Second, there might be changes

of mobility patterns enabled by the new infrastructure we are

not aware of yet. Taking advantage of emerging network analy-

sis, this paper tries to present some steps to overcome this

knowledge gap.
2. Results
To sketch the geographical structure of intra-urban movement

from collective transit use, we divided the island city–state

Singapore into zones of 500 � 500 m, indexing all transit

journeys with their origin–destination (OD) pairs (see the elec-

tronic supplementary material for defining spatial zones and

transit journey). By aggregating all transit journeys across

weekdays using OD indexes in 2012, we obtained a directed

and weighted spatial interaction network, which demonstrates
symmetrical in/out-degree distributions (figure 1a,b). This

network—with spatial zones as its vertices and the time-

resolved commuting flows as its edges—is the basis of our

analyses. To explore its statistical properties, we first measure

interaction intensity wij as total passenger flow travelling

from zone i to j, finding that when wij � 10, the tail of distri-

bution P(wij) is well characterized by a power law

P(wij) � w�bij with an exponent b ¼ 1.744+0.002 (figure 1c)

using statistical tools provided in [29]. This indicates that

intra-urban movement displays a strong heterogeneity: most

ODs have small flows, but a few ODs involve massive

demands. Note that a similar scaling is reported for London

Underground [5], suggesting that such scaling of interaction

intensity might be a fundamental property of urban spatial

interactions. To quantify the importance of individual zones

in shaping the aggregate interaction network, we measured

in/out-strength of vertex i as its total inflows and outflows

(sin
i ¼

PN
i¼1 w ji and sout

i ¼
PN

j¼1 wij) on weekdays, respectively.

As figure 1d shows, the spatial distribution of zone strength

also exhibits a strong heterogeneity across the city. Although

it is difficult to identify a deterministic function to characterize

zone strength distributions P(sin) and P(sout), we still find the

same heavy tail characterizing both of them and observe an

intrinsic balance across all zones (figure 1e,f ). Different from

a previous study about the dependency of vertex strength s
on vertex degree k in the worldwide airport network [23],

we found an exponential increase s(k) � exp(lk) instead of a

power law s(k) � kb (with b . 1), suggesting that the network

demonstrates a much faster increase of s than k (see the elec-

tronic supplementary material, figure S1). In fact, considering

the strong heterogeneity of wij, degree k, which merely

counts the presence of edges and exhibits a saturation process

with time, is not appropriate to capture the time-varying archi-

tecture and the backbone of this interaction network (electronic

supplementary material, figures S2 and S3). To check whether

these properties hold over time, we applied these analyses for

year 2011 and 2013 as well. Despite the completion of the CCL

during the study period, we found indistinguishable aggregate

properties for the 3 years.

A key property in understanding the dynamics of a spatial

network is its community structure, defined as vertex par-

titions which have more connections within themselves than

between each other. The importance of community lies in

revealing the intermediate scales of network organization

and identifying hidden structure in network theory. However,

in practice the detection of communities is a difficult task to

apply. The state-of-the-art approach to find these partitions

is to maximize modularity Q [30]

Q ¼ 1

W

X

ij

(wij � w0ij)d(ci, cj), (2:1)

where W ¼
P

i sin
i ¼

P
j sout

j is the total network traffic, w0ij is

the expected interaction intensity estimated from a null

model and d is an indicator function: d(ci, cj) ¼ 1 if zone i
and j belong to the same partition and d(ci, cj) ¼ 0 otherwise.

The approach has been successfully applied on various spatial

interaction networks at different resolutions, such as identifying

effective administrative borders and finding hidden structures of

countries and cities [24–27]. In practice, an appropriate null

model is crucial to get a meaningful expectation w0ij to reveal cor-

responding network structural attributes. Without accounting

for spatial attributes, we adopted the default null model for
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Figure 1. Structure of intra-urban public transport movements in Singapore. (a) Aggregated spatial interaction network across weekdays (from 19 to 23 March
2012). For simplicity, we only show the top 1% of edges with highest total interaction intensity wij þ wji in an undirected manner. The grey markers show the
spatial locations of transit infrastructures, including both bus stops (dots) and metro stations (circles). (b) In/out-degree distribution P(k in) and P(kout) measured on
the aggregated network. (c) Probability density function P(wij) of interaction intensity across all OD pairs. Grey dots show the original histogram and red squares
correspond to a log-binned histogram. As a guide, the green line shows a power law with an exponent b ¼ 1.74. (d ) The spatial distribution of total strength
si ¼ sin

i þ sout
i of each cell. (e) Probability density function P(s in) of in-strength and P(sout) of out-strength. Both of them exhibit heavy-tailed properties.

( f ) Symmetrical plot of s in and sout. Most dots are scattered around the red line, suggesting the homogeneous inflow and outflow spatially.
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defining modularity, i.e. w0ij ¼ sout
i sin

j =W (see the electronic sup-

plementary material, figure S2). Note that one may replace the

null model for special considerations; for example, w0ij is deter-

mined using a gravity model to exclude the dependency on

distance in [26].

To find partitions that maximize modularity Q, we applied

the well-established Louvain method on the aggregated

network across weekdays [31]. Although the detection process

employs only interaction intensity (without using any geo-

graphical information), we still observe a clear spatial

consistency from 2011 to 2013 (see the electronic supplemen-

tary material, figure S4), suggesting that collective

movements are remarkably constant across years. Yet, we

may miss the temporal evolution of these community struc-

tures by merely analysing the aggregated network. To

explore this evolution over the day, we grouped all transit

journeys according to their transaction times (see the elec-

tronic supplementary material for details). Based on these

temporally grouped journeys, we created a series of sub-

networks and applied the community detection processes

on each of them. In figure 2a, we summed intra- and inter-

community flows and measured their temporal variations

using 2012 data. Although community structure is well

defined spatially and intra interactions are much stronger

than inter interactions (kwinl . kwoutl), the total number of

journeys crossing communities is still higher than that of

intra community trips (
P

win ,
P

wout), suggesting that

people are not confined to a spatial community but show

wider destination choices. Likewise, we repeated this analysis

for the other years for comparison, finding that temporal vari-

ations of modularity Q are essentially indistinguishable

across years (figure 2b and electronic supplementary material,
figures S6–S8). This indicates that temporal intra-urban

movements (or collective mobility) might be comparable as

well. Given the clear geographical consistence of these com-

munities, modularity Q is actually a measure of spatial

mobility patterns embedded in temporal activities. To

explore the variability of collective mobility over time, we

measured the average trip distance kdl for each sub-network.

Not surprisingly, we also found high degree of similarity of

kdl across years (figure 2c), indicating that temporal travel

behaviours of populations are essentially comparable over

3 years as well. Next, we compared Q and kdl jointly to

explore how collective movement shapes the time-varying

community structure. If communities are well identified as

spatial clusters, the longer people travel, the higher the

chance that one jumps out of a community. However, the

relation is unclear without the assumption. For example,

taking only structured metro trips will give rise to high

modularity and long travel distance, whereas short and

random local trips will lead to low modularity and short dis-

tance. We find that they are linked by a universal and

substantial negative correlation Q � akdl (figure 2d; with

r2011 ¼ 20.9718 [p , 1024], r2012 ¼ 20.9623 [p , 1024] and

r2013 ¼ 20.9763 [p , 1024]); and once again, we observed

similar structural patterns across years, independently of

the completion of the CCL. Therefore, using time-varying

travel displacement as an indicator, we confirmed that tem-

poral variation of collective movement plays a crucial role

in expressing the dynamic community structures.

To explore how distance affects systematic/occasional

travel behaviour, we quantified the variation of two distance-

related diversity measures. Without considering individual

identity, we first quantify the degree of heterogeneity of
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bi-directional flows by measuring a diversity index of OD (i, j)
as uij ¼ max {wij, w ji}=min {wij, w ji} (for OD pairs with

wij, w ji . 0). If the collective attribute uij is independent of dis-

tance, we expect to find uij being characterized by a

determined distribution free from dij. However, on the contrary,

we do find a significant and consistent reduction of kuijl with dij,

indicating that bi-directional transit flows at a collective level

become more and more balanced with distance. Still, this is

not sufficient to show homogeneity at the individual level.

Taking advantage of the anonymized card ID, we further inves-

tigated the similarity of users travelling between i and j for each

day using the Jaccard index lij ¼ jWij > W jij=jWij < W jij, where

Wij represents the set of individuals travelling from i to j; thus, lij

is close to one if all individuals travel symmetrically each day,

and zero if no one returns to previously visited locations

(i.e. Wij > W ji ¼ ;). After measuring lij for all OD pairs across

weekdays, we show the dependence of klijl on dij in figure 3b,

finding another consistent (increasing) trend across 3 years.

Therefore, despite previous observations characterizing explora-

tion/preferential return behaviour [32], we found that shorter

travel distances are associated with higher exploration; and cor-

respondingly, previously visited locations are more preferred for

longer distance journeys. Moreover, these properties are also

stable across years, independent of the new metro line.

Large-scale human mobility patterns have been described

by three indicators: trip distance distribution P(d), temporal

variation of radius of gyration rg(t) and number of visited

locations S(t). However, the duration of stay at one location, as

another important attribute in understanding why people

move rather than why people stay, is seldom considered in the

literature. To investigate recurrence and periodicity of travel be-

haviour and the patterns of stay in terms of both exploration/

preferential return behaviours, we classified transit usage
based on the pattern [33]: round journeys (with two trips i! j
and j! i) and trip chains with two trips (i! j and j! k,

where i = k), and measured the duration of stay at zone j for

each. In figure 3c,d, we show the change of average duration

of stay for both round journeys (ktRl) and exploratory trip

chains (ktEl) as a function of distance dij, finding that both ktRl
and ktEl display an consistent increase with d in the beginning

and reach saturation after d ¼ 10 km. In comparing them, we

find that tR is significantly longer than tE ( p , 1024, Wilcoxon

rank-sum test), suggesting that people tend to stay longer at

the destination of round trips. To further distinguish tR from

tE, we group journeys with similar travel distance dij and deter-

mine the distribution P(tRjd) of stay duration (by measuring the

interval between journey i! j and journey j! i) and P(tEjd) (by

measuring the interval between two journeys i! j and j! k)

for each group. As the insets of figure 3c,d show, both P(tRjd)

and P(tEjd) can be approximately characterized by a mixture dis-

tribution of a short stopover (secondary activity around 1 h,

such as shopping, eating and leisure activities) and a long pri-

mary activity (around 10 h, such as work and school). We

note that the key difference between tR and tE is their compo-

sition: the proportion of primary activity in return journeys is

significantly higher than that of a trip chain. Thus, figure 3c,d
also implies a strong correlation between trip purpose and

travel distance, further confirming the role of distance in shaping

spatial interaction structure. Taken together, we show that travel

distance not only determines the balance of intra-urban

movement and a traveller’s exploration/preferential return be-

haviour, but also with the type of journey. Not surprisingly,

we once again observe a clear consistency of tR and tE across

the 3 years.

Previous analyses has shown that intra-urban movement is

consistent over the 3 years, exhibiting patterns independent of
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the key infrastructure project, suggesting that human mobility

may display universal patterns invariant to the change of

transportation infrastructures. However, as mentioned, with

time-varying interactions during a day, the resulting structural

communities should be changing simultaneously over time

(such as the continuous changing of boarders and emergence

of new communities). This effect offers us more insight into

how spatial interactions shape the city. To quantify it, we

define neighbourhood variability gi(t1, t2) of zone i between

the sub-networks at time t1 and t2 as

gi(t1, t2) ; 1� jCi(t1) > Ci(t2)j
jCi(t1) < Ci(t2)j , (2:2)

where Ci(t) represents the community which zone i belongs to

at time j. Hence, gi(t1, t2) is close to one if the intersection

contains only i and zero if Ci does not change from time t1

to t2. Using continuous observations during 1 day, we quanti-

fied the overall spatial evolution of zone i by calculating

mutability index fi as average neighbourhood variability

from t0 till tmax [34]

fi ;
Ptmax�1

t¼t0
gi(t, tþ 1)

tmax � t0
, (2:3)

where t0 is the time step when we start observing the temporal

evolution and tmax is the last time step. Thus, fi quantifies the
overall evolution of community structure for each individual

zone, characterizing the robustness/fragility of the spatial com-

munity to which zone i belongs. Essentially, fi quantifies

community transition rate of zone i when other zones are

also changing simultaneously. A high fi typically indicates

that zone i is attached to diverse communities over time and

vice versa. In other words, the mutability index fi used here

could also be interpreted as a measure to quantify the diversity

of temporal community attachment. By setting t0 ¼ 6 and

tmax ¼ 23 (from 06.00 to 23.00 in 1 h intervals, see the electronic

supplementary material for details), we determined the value

of fi,y for each individual zone i in year y. As shown in

figure 4a–c, we find that mutability displays clear and com-

parable spatial patterns: one can easily distinguish the

borders between regions with different mutability. Particularly,

the central/southern area displays a higher mutability and the

western/eastern parts are generally stable across 3 years.

To further compare mutability across years, we calculatedDf

(as Df1 ¼ fi,12 � fi,11 and Df2 ¼ fi,13 � fi,12) and map the

results in figure 4d,e, respectively. Notably, although the tem-

poral change of Q, kdl and other collective mobility indicators

are essentially indistinguishable, we do observe a significant

difference when using Df1 as an indicator, while not much

difference is observed when measuring Df2. We think that the

completion of the CCL appears as a main factor for this difference
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(figure 4d). As mentioned, only the right half of the CCL was in

operation in 2011 (stage 1), while the full metro line has come into

service since October 2011 (stage 2). Given the definition offi, the

implication ofDfi . 0 are twofold. On one hand, for those zones

that have not changed their membership during a day, such as

most zones in the eastern/western community, the decrease of

fi suggests that the community to which zone i belongs becomes

more consistent over time. On the other hand, for those zones

that changed their membership during a given time, a decreasing

fi implies that zone i changes less frequently and strengthened its

dependency to the attached community. In fact, the completion

of stage 2 (the western half of the circle) enables travellers to

find their desired destination choices collectively in a structured

manner with lower cost, instead of making diverse choices indi-

vidually. In this sense, the completion of stage 2 of CCL may

make zones in southern area (the white circle in figure 4d)

more accessible to either the western community or the central

community (as shown in the electronic supplementary material,

figures S6–S8). We next perform statistical tests on Dfi for zones

within the white circle (radius 4 km, 124 zones nearby the

extended CCL) and zones outside the circle (1170 zones). We

find that Df1
i in the nearby area are significantly lower than

others (p , 1024; left side Wilcoxon rank-sum test), while there

is no clear evidence to show Df2
i in the nearby area are different

from the others ( p¼ 0.213; Wilcoxon rank-sum test).
3. Discussion
Understanding spatial interactions is crucial to urban planning,

traffic forecasting and various mobility-related urban diffusion

processes such as epidemic spreading and social contagions.
More importantly, coupled with the transportation infrastruc-

ture layers of a city, social economic outputs are shaped by

these interactions [35,36]. Although the study of mobility has

a long history, previous works were almost all based on mod-

elling these interactions for planning purposes owing to a lack

of longitudinal data detailed enough across both spatial and

temporal scales. Yet, the evolution of urban structure with

these temporal interactions is merely revealed: it remains a

challenge to distinguish the natural variability in the city’s

mobility from large deviations, using either coarse-grained or

short-timescale mobility data.

Taking advantage of population-scale smart card datasets

spanning 3 years, we study the structure of Singapore’s intra-

urban interaction network and present how it is influenced

by a key transportation infrastructure project (the CCL in

this case). Despite that Singapore has been a dynamic, fast-

changing city, we show that human mobility displays invar-

iant aggregate patterns across the years, even when seeing a

large infrastructure project. As a city evolves over the years,

how can we distinguish large deviations in mobility from

statistical fluctuations in a city’s mobility patterns? Our

study suggests that commonly used tools and statistics do

not offer sufficient sensitivity to identify key changes in the

city’s mobility structure.

We present evidence for this by first examining the tem-

poral community structure that emerges from collective

travel behaviour, and study its variation across years. Using

modularity as an indicator, we find that the community

structure varies consistently with the spatial–temporal

characteristics of collective mobility, indicating that distance

acts as a powerful constraint to keep universal mobility pat-

terns in place over 3 year period, and therefore, does not
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allow us to discriminate the impact of the completion of the

CCL. Moreover, we found that both modularity Q and aver-

age journey distance kdl demonstrate clear and consistent

temporal homogeneity, exhibiting remarkable robustness to

the competition of the extended CCL as well. Taking stay-

durations as another indicator quantifying human mobility,

we showed that travel distance not only determines individ-

ual’s exploration and preferential return behaviour, but also

associates with one’s purpose of travelling. However, none

of these indicators help us identify the global impact of CCL.

Notably, despite other structural and behavioural dynamic

indicators being almost consistent and indistinguishable over

the long-term, we do observe a significant difference of

mutability. Mutability, which is defined as the average ratio

of community members changed across time, emerges as a

highly sensitive tool to understand the position of individual

zones in the overall evolution and real-time evolving borders of

community structure. In fact, it is sensitive to the differences in

mobility caused by major transportation infrastructure change,

showing the evolving borders in community structure, and

with this theway people interact to shape, sustain or reform acity.

Our findings and analysis framework offers analytical

tools to better sense the evolution of mobility patterns in

cities, providing insights for urban planning, modelling and
understanding the evolution of cities through the coupling

of infrastructure and interaction networks. Given that ICT is

being fast embedded in our daily-life, spatial–temporal digi-

tal traces helping us to follow cities will become available in

various forms, overcoming the limits of field surveys and

interviews. In the near future, much urban data which are

generated in real-time will become available for urban

planning, improving the quality of life. Despite the privacy

concerns, taking full advantage of such data in planning

would surely help us further understand urban dynamics

and make our cities smarter. Taken together, our study

offers a quantitative and general strategy to understand the

dynamic evolution in multiple temporal scales and serve as

a basis to further track and model such evolution [37].
Acknowledgements. We thank M. González for discussions and com-
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23. Barrat A, Barthélemy M, Pastor-Satorras R,
Vespignani A. 2004 The architecture of complex
weighted networks. Proc. Natl Acad. Sci. USA 101,
3747 – 3752. (doi:10.1073/pnas.0400087101)
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