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Understanding of the mechanisms driving our daily face-to-face
encounters is still limited; the field lacks large-scale datasets
describing both individual behaviors and their collective interac-
tions. However, here, with the help of travel smart card data, we
uncover such encounter mechanisms and structures by construct-
ing a time-resolved in-vehicle social encounter network on public
buses in a city (about 5 million residents). Using a population scale
dataset, we find physical encounters display reproducible tempo-
ral patterns, indicating that repeated encounters are regular and
identical. On an individual scale, we find that collective regularities
dominate distinct encounters’ bounded nature. An individual’s en-
counter capability is rooted in his/her daily behavioral regularity,
explaining the emergence of “familiar strangers” in daily life. Strik-
ingly, we find individuals with repeated encounters are not
grouped into small communities, but become strongly connected
over time, resulting in a large, but imperceptible, small-world con-
tact network or “structure of co-presence” across the whole met-
ropolitan area. Revealing the encounter pattern and identifying
this large-scale contact network are crucial to understanding the
dynamics in patterns of social acquaintances, collective human
behaviors, and—particularly—disclosing the impact of human be-
havior on various diffusion/spreading processes.

human mobility | behavioral rhythms | social networks | social sciences

Highlighting their importance in various temporal spreading
processes (1–3), recent studies of human contact networks

demonstrate an increasing interest in physical encounters (4–9).
Contrary to nonphysical social contacts initiated by mobile
phone calls, e-mails, and online social networks (10–14), human
subjects’ physical encounters take place with heterogeneous
prior knowledge of each other, from acquaintances to unknowns,
linking two individuals by their copresence in both spatial and
temporal dimensions (15). On the other hand, with increasing
human interactions, communities may also emerge from social
contagion enabled by physical proximity: from not noticing each
other, to unintentionally interacting, to intentional communi-
cating, to mutual trust (9). We are tracing—for a large pop-
ulation—in this case for all of Singapore’s bus users, how these
encounters are structured by both individual behavior and in-
stitutional structures. Bus use is a small slice of urban life, but
one where “familiar strangers” will emerge (16, 17)—strangers
who have been encountered frequently in daily life, but might
never have been addressed. This context is one of many, which,
in their totality, give residents the social background against
which they construct their more intense relationships. We be-
lieve the joint encounter pattern is influenced by individual
regularity (18, 19). A previous study based on the dispersal of
bank notes suggested that human trajectories follow continuous-
time random walks (20); however, considering the inherent
regularity in individual behaviors, recent analyses of large-scale
trajectories from mobile phone data and travel diaries indicate,
on the contrary, that individual mobility patterns display signif-
icant regularity and remarkable predictability (18, 19, 21).

With the help of sensors and online networks, data describing
close proximity in real-world situations sheds light on encounter
patterns and spreading dynamics in contact networks other than
diary-based surveys (4). However, these data collection systems
are generally embedded in limited samples in spatially small-
scale settings such as schools (6), conferences and exhibitions (5,
7), and even in prostitution (8). On a large scale, we still lack
empirical data describing examples of both individual regularity
and joint encounter patterns (other than simulating mobility and
behavior patterns individually, relying on computational and
agent-based models) (22–24). Thus, given data limitations,
studies on individual mobility regularity and collective inter-
actions are traditionally conducted separately: the mechanisms
driving our daily encounters remain unclear.
Therefore, with the increasing quantity and range of human

mobility, a central task is to explore social interaction patterns
along with mobility regularity. However, previous data collection
techniques fail to offer high-resolution information on collective
interactions on a large scale (across the population). In this
context, individual-based passive data collections embedded in
our daily life, such as credit cards and smart cards transactions,
can be advantageous. At present, transit use might be the best
proxy to capture the patterns of both individual mobility and
collective interactions in an urban environment (25). Here, we
use public transit transaction records to uncover encounter
patterns (see SI Appendix, section I for a detailed description).
This dataset consists of more than 20 million bus trips from
2,895,750 anonymous users over 1 wk (Fig. 1A) (about 55% of
the resident population) in Singapore. The high spatial-temporal
resolution of this dataset allows us to extract time-resolved in-
vehicle encounters, defined as two individuals occupying the
same vehicle simultaneously (Fig. 1B). Using these, a city-scale
empirical temporal contact network is created.

Results
Use of transit service in general, and buses in particular, is dif-
ferentiated by ethnicity, sex, age, and income, meaning that daily
transit use might exhibit social segregation as well. To address
dependency and segregation of bus use on social demographic
attributes, we incorporated two additional datasets aside from
smart card transactions: population census and national house-
hold interview travel survey (HITS). For our case, although
transit use in Singapore shows dependency on age and income,
public transit is still the most important transport means for daily
commuting trips across all Singaporeans (SI Appendix, section
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II). By studying transit use, we found that both trip duration and
trip frequency can be accurately characterized by exponentially
decaying tails, showing that people’s transit activities are limited
in number and duration during 1 wk (SI Appendix, sections III.2
and IV.1). To understand individuals’ transit use patterns, we
first measured the number of encountered people n against trip
frequencies f for each individual. We find that the joint distri-
bution Pðf ; nÞ has a symmetric pattern against n=f ≈ 50, in-
dicating the substantial number of people encountered in each
trip (Fig. 1C). We then measured the interevent time τ between
consecutive bus trips for the population, finding that PðτÞ shows
clear temporal patterns with prominent peaks (SI Appendix,
section IV.3), which is contrary to the non-Poissonian nature of
PðτÞ∼ τ−β   exp  ð−τ=τcÞ in communication activities observed
from digital networks (10–14), suggesting the periodicity of
transit use on the population scale. To explore the pattern of τ at
the individual level, we grouped people according to their trip
frequencies. In Fig. 1D, we added f to each τ as an attribute and
measured the joint probability distribution Pðf ; τÞ. Observing the
heterogeneity rooted in individual behaviors helps us distinguish
regular travelers from other passengers. Therefore, given the
transit use variation (and the analysis in SI Appendix, sections III
and IV), we suggest that transit use is a good example for capturing
both individual mobility patterns and collective encounter patterns,
certainly for our case study.

As mentioned, an important phenomenon triggered by col-
lective regularities is the familiar stranger, which is also crucial in
explaining how likely it is that the same persons will be en-
countered again (Fig. 2A). To explore the pattern of repeated
encounters on the population scale, we created an aggregated
encounter network over weekdays and measured the interevent
time τe between consecutive encounters of paired individuals,
capturing 27,892,055 intervals from 18,724,388 pairs. We found
that the distribution PðτeÞ is characterized by prominent peaks at
24 h, 48 h, 72 h, and 96 h, displaying a strong tendency of pe-
riodic encounters covering about 75% of all cases, suggesting
that the joint regularity also displays significant temporal peri-
odicity (Fig. 2B). We also observed a decreasing pattern of PðτeÞ,
as the observed numbers decrease when interval τe is longer. To
avoid bias, we extracted and grouped the timings of current and
the next encounters ðTc;TnÞ over all pairs, so that for one pair
with three encounters, two records are created [ðT1st;T2ndÞ and
ðT2nd;T3rdÞ]. We then measured the joint distribution PðTc;TnÞ
(Fig. 2C). Strikingly, we found that the joint distribution pres-
ents reproducible patterns on the same diagonal with Dn −Dc =
f1d; 2d; 3dg, respectively, where Dc and Dn represent the days
of Tc and Tn, respectively, suggesting the homogeneity of daily
encounters. To measure reproducibility, we summed the proba-
bility for each day-of-the-week pair, excluding the diagonal cases
with Dc = Dn, obtaining the density matrix:
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Fig. 1. Characteristics of transit behaviors. (A) Departure rate of city bus trips. Demand shows similar shapes from Monday to Friday. Two prominent peaks
can be identified every day, indicating collective commuting behavior. (B) Time-resolved encounter network on one vehicle service (214 passengers) created
using transaction records. Size of each node indicates number of encountered people; color and thickness of each edge indicate start time and duration,
respectively, of each encounter activity. This figure explains use of smart card data to create an empirical encounter network in city-scale. (C) Probability
density function Pðf ;nÞ of trip frequency f and number of encountered people n of all individuals. Symmetric pear-shaped pattern suggests linear relationship
of n=

Pf
i=1ni ≈ 50f . (D) Probability density function Pðf ; τÞ of trip frequency f and interevent interval τ between consecutive bus trips. Although diversity of

individual transit use obscures the distribution, a remarkable area with ð5≤ f ≤ 25; 0≤ τ≤ 25Þ can be identified through similarity in regular commuters’ transit
behavior.
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Considering the values in PðDc;DnÞ, we found that repeated
encounters over the population can be modeled well as a Ber-
noulli process with probability of success Pencounter ≈ 0:33, which is
another factor behind the decrease of PðτeÞ.
To reveal the homogeneity of day-to-day encounters, we fur-

ther studied PðTc;TnÞ. As the Inset of Fig. 2C shows, we found
a strong diagonal on 23h≤Tn −Tc ≤ 25h, which covers 85% of
the cases, suggesting that most recurring encounters happen at
about the same time of day. Despite this, we also observed two
areas representing cross-period encounters, such as the first in
the afternoon and the following in the morning on the next day.
To compare the distributions of different day-of-the-week pairs
ðDc;DnÞ, we grouped the pairs according to Dn −Dc = f1d; 2d;
3d; 4dg, respectively, and rescaled both Tc and Tn to time of day
tc and tn. Then, we measured the probability density PðtÞ of en-
counter time by merging tc and tn (Fig. 2D) and the distribution
of interevent intervals Δt= tn − tc (Fig. 2D, Inset). Taken to-
gether, we found both PðtÞ and PðΔtÞ for different groups share

indistinguishable shapes, indicating that the daily encounters can
be characterized by a general temporal pattern. Furthermore,
although afternoon peaks are longer and higher than morning
peaks in daily transit use (Fig. 1A and SI Appendix, Fig. S6B), we
confirmed that repeated encounters tend to happen more often
in the morning, suggesting that collective regularity is more pro-
nounced in the morning than in the afternoon (21). In this contact
network, it is also implied that spreading via repeated interactions
is more likely in the morning than afternoon. In addition, the
prominent peaks at Δt= 0 indicate that the most probable time
for a recurring encounter is the same as the previous one.
Still, until now, the field lacked analyses to uncover mecha-

nisms that drive encounters on an individual level. Therefore, we
began to measure the encounter frequency of paired individuals,
finding that the distribution PðfeÞ of encounter frequencies can
be well characterized by a heavy-tailed distribution, even though
the network is very dense, explaining the emergence of familiar
strangers (SI Appendix, section VI.3). Although fe is a good ap-
proximation of connection strength, it fails to capture the actual
overlapping of collective behaviors when considering other ex-
ternal factors such as transfers. To avoid misinterpreting the
data, we used total encounter duration dði; jÞ=Pfeði;jÞ

k=1 td;kði; jÞ to
better quantify the connection strength of individual pairs ði; jÞ,
where td;kði; jÞ is the duration of their kth encounter. In Fig. 3A,
we show the distributions PðdÞ (for all individual pairs) and PðtdÞ

A

 (h)

P
(

)

0 24 48 72 96 120
10-5

10-4

10-3

10-2

10-1

100B

Tn

Tc
Mon Tue Wed Thu Fri

Mon

Tue

Wed

Thu

Fri

10

10

10

10

10

10-2

-3

-4

-5

-6

-7

C

t (h)

P
(t)

6 9 12 15 18 21 24
0

0.1

0.2

0.3

0.4

1d
2d

3d
4d

Δ t (h)

P
(Δ

 t)

-24-18-12 -6 0 6 12 18 24
10-5

10-4

10-3

10-2

10-1

100D

Fig. 2. Temporal patterns of repeated encounters. (A) A typical temporal contact network of one individual with his/her familiar strangers (encountered
more than once). Edge colors indicate start timings during the week. As observed, neighbors are also highly connected over time, suggesting network’s strong
social connection and small-world property. (B) Probability density function PðτeÞ of interevent time between two consecutive encounters of paired indi-
viduals. The prominent peaks suggest that paired individuals tend to meet each other daily. A general decreasing trend is observed as well. On average, pairs
of individuals with repeated encounters can meet each other about 27; 892; 055=18;724; 388+ 1≈ 2:5 times during the week. (C) Joint probability density
PðTc ; TnÞ of timings of two consecutive encounters. (Inset) Zoom-in of one density square. (D) Distribution PðtÞ of encounter time for four groups with
Dn −Dc = f1d; 2d; 3d; 4dg, respectively. Inset of figures shows the distribution PðΔtÞ of intervals between rescaled timing of paired encounters Δt = tn − tc . The
prominent peak at Δt = 0 suggests most repeated encounters happen at the same time.
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(over all trips) in both log–log scale and semilog scale. We found
that PðtdÞ can be well captured by an exponentially decaying tail,
whereas PðdÞ displays a power-law tail PðdÞ∼ d−β with exponent
β≈ 4:8± 0:1. The significant degree of heterogeneity indicates
that collective d has overtaken the exponential bounded td. To
summarize the observation of pairs of travelers, collective reg-
ularities do occur, suggesting that encounter patterns are influ-
enced by paired individuals’ behavior patterns.
Next, on an individual level (see SI Appendix, section VII for

modeling details), we propose a personal weight wi of individual
i proportional to their paired encounter frequency:

wi ≡
X
j∈NðiÞ

ð feði; jÞ− 1Þ; [1]

where NðiÞ is the set of encountered people and feði; jÞ is the
frequency of encounters between individual i and j observed.
Thus, wi captures the likelihood of encountering familiar strang-
ers. In Fig. 3B, we chose individuals who had recurring encoun-
ters ðwi ≥ 0Þ and plotted the probability density functions PðwÞ of
personal weight and PðkÞ of the number of familiar strangers,
respectively. We find that both distributions can be approximated

well by power-laws with high cutoffs, with the same exponent β≈
1:08± 0:02. It is important to note the great variation in person
weights—that is, encounter likelihoods—suggesting that encoun-
ter patterns might be influenced by individual behavior patterns.
To explore how individual behavioral regularity impacts col-

lective encounter patterns, we tried to quantify both individual
encounter capability and transit use. First, to better measure
individual encounter likelihood beyond travel time influence, we
rescaled wi to ri =wi=Tiðhour−1Þ for each individual, where Ti is
the total travel time in hours. Inspired by the k-means clustering
method—for individual i—we used the absolute difference mi of
morning and evening trips to quantify behavioral regularity:

mi =
X2

k= 1

X
tj∈Sk

��tj − μk
���n; [2]

where tj = ðtstart + tendÞ=2 is the mean of start and end times of the
jth ðj= 1; 2;⋯; nÞ trip and μk is the mean of ftjjtj ∈ Skg. Therefore,
mi captures the time variation of daily transit use (the lower mi
is, the more repetitive the individual will be; SI Appendix, sec-
tion VII.2). To reveal the relation between behavioral regularity
and encounter likelihood, we grouped the individuals according to
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Fig. 3. Individual’s impact on collective encounters. (A) Probability density functions PðdÞ of sum of durations of repeated encounters and PðtdÞ of duration
of individual encounters on weekdays; the same distributions are shown in semilog scale as Inset. Solid line shows power-law with exponent β= 4:8, sug-
gesting that although distinct encounters exhibit exponentially bounded nature, paired total encounter duration presents scale-free property. Maximum
values of d and td are 9:22×104s (25.6 h) and 7:93× 103s (2.2 h), respectively. (B) Distributions PðwÞ of personal weight and PðkÞ of number of familiar
strangers (Inset) of 1,626,040 individuals with wi > 0. Solid lines show power-laws and dashed curve shows distribution PðuÞ of number of total encounters
ui ≡

P
j∈NðiÞfeði; jÞ as guides. (C) Probability density function PðmÞ of absolute trip difference m for grouped individuals with different r (colored lines). (Inset)

Mean value of m<m0:95 for people with certain r, suggesting a direct correlation: the higher one’s encounter capability, the more stable one’s behavior. (D)
Evolution of time-aggregated network of 783,247 individuals with personal weight wi ≥ 10. (Top) The fraction of presented nodes and size of largest
component. We found these two curves indistinguishable, suggesting high network connectivity. (Middle) Evolutions of average number of encounters hki
and average number of encountered people hei. (Bottom) Evolution of average clustering coefficient c during the week, suggesting small-world property of
this aggregated network.
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ri and measured the distribution PðmjrÞ for each group. As Fig. 3C
shows, individuals with higher ri tend to have less skewed PðmÞ,
whereas those with low ri display a more skewed distribution. In
addition, we took the average of m≤m0:95 over people with cer-
tain r, where m0:95 is the 95th percentile of their m, finding that
the average absolute difference reaches about 50 min for r< 4h−1,
whereas for those with r≥ 80h−1, the value decreases to less than
15 min, significantly shorter considering that the expected head-
way (i.e., service interval) of public buses is around 10 min (Fig.
3C, Inset). In summary, we found that a larger encounter likeli-
hood of an individual is strongly rooted in his/her behavioral
regularity.
With these common daily physical interactions, the resulting

regularity-rooted encounter network plays an important role in
various urban environment dynamics like epidemic spreading.
Given that most contact-network–based spreading models still
focus on network topology (26, 27) or small-scale contact pro-
cesses (5–8), identifying this real-world physical contact network
is potentially important in studying encounter patterns and dif-
fusion/spreading dynamics in large populations. To model the
dynamical evolution of this contact network, we extracted time-
aggregated networks of people with wi ≥ 10. At the top of Fig.
3D, we plotted the fraction of those individuals over the pop-
ulation, finding a rapid increase from 0% to about 90% on
Monday, followed by slower growth afterward. We next checked
the variation of average number of encounters hki and average
number of encountered people hei, finding linear increases of
both hki and hei without saturation, indicating that the people
one may encounter differ from day to day, result in weak and
random connections compared with social relations (Fig. 3D,
Middle). However, we note that hki increases faster than hei,
suggesting that “stronger” connections with familiar strangers
are formed gradually through random encounters. At the bottom
of the figure, we plotted the evolution of average clustering co-
efficient c, finding that the encounter network displays strong
small-world property network with characteristic path length
hli≥ lrand and c � crand (28) (hli= 2:95, lrand = lnðnÞ=lnðkÞ= 2:63
and diameter lmax = 6; c= 0:19 and crand = hei=n= 4:5× 10−4).
Viewed as a whole, the empirical encounter network we illustrate
here is a well-connected small-world graph, in which individuals
are no longer confined to local encounters in one vehicle, but
interact strongly with increasing number of people across the
whole city from day to day.

Discussion
It has been assumed that human behavior and social interaction/
contagion were connected for a long time; however, it is difficult
to identify the link between them in observational studies (29,
30). Taking advantage of the availability of metropolitan data
collection offered by smart cards in Singapore (this exercise
could be very useful for other cities around the world), we tie
together thinking on individual mobility with collective in-
teraction patterns. Although the specific results are certainly
embedded within the social profile and data of our study, ques-
tions remain: how can smart card data give such insight on social
interactions, and how much do these patterns vary from context
to context? As a result of various preferences and constraints on
individual behavior, spatial-temporal patterns and collective

regularity can be found in daily life, such as morning/evening
peaks in transportation, degree of crowding in shopping malls
and supermarkets at weekends and in restaurants during dining
hours, and so forth. Transit use is only one of these social ac-
tivities with a limited time allocation and specific locations. This
study scrutinized only one of a whole spectrum of metropolitan
patterns, although it is a critical one. We took transit users as our
subjects and the definition of encounter in our study is limited to
physical proximity or copresence, which is characterized by
individuals occupying the same vehicle simultaneously. Consid-
ering vehicle configuration and loading profile (SI Appendix,
section I), physical proximity does not necessarily indicate
a more intense social contact, such as talking to each other, but
does imply diverse interactions, from not noticing each other, to
fleeting eye contact and close observation. As a core of social
psychology, social contagion deals with thoughts and behaviors
of others by innovation adoption, rumor spreading, and decision
making. Although the similarity between social contagion and
epidemic spreading was recognized a long time ago (31), in the
context of physical proximity, social contagion depends more on
familiarity than epidemic spreading. Thus, future questions are
raised: how to measure the familiarity in the passive familiar
strangers networks, and how to define the threshold of familiarity
on social diffusion processes. Nevertheless, we know that social
communities emerge from the increasing familiarity of individ-
uals into collective forms: from unintentional and passive inter-
actions to intentional and active communication, from mere
physical proximity to mutual trust (9). We have shown the exis-
tence of city-wide structures of copresence in Singapore; the
extent to which the bus users are aware of these structures has
yet to be determined.
Unlike other social networks, where people interact within

a circle of friends and acquaintances, we show an often-ignored
type of social link: weak, passive, and indirectly enabled by daily
encounters. Moreover, the structuring of physical encounters is
demonstrated on a metropolitan scale. As a result of deep-
rooted individual behavior patterns, our results also present the
collective regularity of people with their recurring encounters as
evidence, explaining the familiar strangers phenomenon in daily
life. With the rapid development of information and communi-
cation technologies, richer data will be generated throughout our
daily life (32). Although the role of such data is limited by an
inherent tradeoff, it does not portray everything in detail.
However, the emergence of such data provides us with consid-
erable opportunities to enhance our understanding of the social
world and its processes. Our work should serve as a base to
better understand collective human behaviors, dynamical evo-
lution of social networks (33, 34), and especially the impact of
collective regularity on various diffusion/spreading processes
(4, 35, 36).
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